噬菌体是一种细菌特异性病毒,外部蛋白衣壳包裹着噬菌体遗传物质,在某些情况下还有丝状尾巴。它们数量众多且变化多端,在影响微生物生态学方面发挥着重要作用。1 噬菌体与细菌共同进化了数亿年,选择性地结合并感染目标宿主,从而能够通过靶向裂解影响多菌株微生物种群的种群动态。此外,如果保存在非恶劣环境中,大多数噬菌体都具有长期高度稳定性,只有在紫外线下才会分解、物理磨损或暴露于某些化学物质时才会受损,只有少数例外。噬菌体基因组很小且相对简单,可以通过合成生物学方法进行工程改造,将小分子递送到入侵感染处,扩大或缩小噬菌体疗法的目标,或与生物材料结合用于伤口愈合技术。本综述旨在描述用于治疗感染(包括慢性和多重耐药性细菌群)的各种噬菌体疗法。特别关注噬菌体的递送方法以及所选策略的优缺点。
噬菌体 DNA 分离试剂盒产品说明书 产品编号 46800 Norgen 的噬菌体 DNA 分离试剂盒提供了一种快速方法,可从在液体培养的细菌中繁殖的噬菌体中分离和纯化总 DNA。无需使用苯酚、氯仿或氯化铯即可分离 DNA。基于旋转柱的程序速度很快,可在 45 分钟内完成。该试剂盒可高效处理少量噬菌体上清液 (1 mL)。纯化的 DNA 具有最高的完整性,可用于多种下游应用,包括南方印迹、限制性片段长度多态性 (RFLP)、测序、克隆和实时 PCR。Norgen 的纯化技术 纯化基于旋转柱层析。无需使用苯酚、氯仿或氯化铯,即可优先从其他细胞成分(如蛋白质)中纯化噬菌体 DNA。该程序的起始材料是澄清的噬菌体上清液,该上清液已从液体培养物中的细菌碎片中分离出来。首先,使用提供的裂解缓冲液 B 通过热和化学裂解过程裂解噬菌体颗粒(请参阅第 4 页的流程图)。将异丙醇添加到裂解物中,然后将溶液加载到旋转柱上。Norgen 的旋转柱以取决于离子浓度的方式结合核酸,因此只有 DNA 会与柱结合,而大多数 RNA 和蛋白质会在流过中被去除。然后用提供的洗涤溶液 A 洗涤结合的 DNA 以去除任何残留杂质,并用洗脱缓冲液 B 洗脱纯化的总 DNA。纯化的总噬菌体 DNA 具有最高的完整性,可用于许多下游应用。试剂盒组件
摘要沃尔巴克氏体是动物体内分布最广泛的细菌内共生体。在节肢动物中,这些母系传播的细菌可以自私地劫持宿主的生殖过程,以提高传播它们的雌性的相对适应度。一种称为雄性杀灭或选择性杀死受感染雄性的生殖寄生形式,通过转基因表达原噬菌体 WO 介导的杀灭 ( wmk ) 基因在一定程度上重现。在这里,我们利用转基因表达表征了果蝇中 wmk 诱导的雄性杀灭的基因型-表型景观。虽然系统发育上遥远的 wmk 同源物不会引起性别比例偏差,但密切相关的同源物表现出复杂的表型,包括不死亡、雄性死亡或所有宿主死亡。我们证明替代起始密码子、同义密码子,尤其是 wmk 中的单个同义核苷酸可以消除杀灭。这些发现揭示了转基因 wmk 诱导杀戮的先前未被认识到的特征,并为转录后过程对雄性杀戮变异的影响建立了新的假设。我们得出结论,同义序列变化在具有生死后果的嵌套内共生相互作用中不一定是沉默的。
折叠式和展开的分子选择用于热力学稳定性的选择是最新的发展是使用噬菌体显示器来选择具有改善热力学性能的蛋白质。通常,蛋白质稳定性是生物技术应用中的关键因素,无论是在升高温度还是在37°C下在生物医学应用中延长持续时间,并且通常与蛋白质搁板寿命相关。只有只有正确折叠的完整分子,因此功能结合位点才能与固定的配体相互作用,只要非本性蛋白质典型的非特异性相互作用可以有效地选择,则该形式可以通过噬菌体显示。在这些条件下,只要没有其他突变改变结合位点,功能性配体结合的选择有利于在噬菌体上更高的多肽突变体,即噬菌体,即较高百分比的分子位于本地状态的多肽突变体。作为一个序列,使用噬菌体显示的“正常”选择始终包括正确折叠的库成员的固有选择,因此在可接受的总体属性中选择了“复合”选择。有几位研究者[16-18]指出了这种观察结果,并在一项研究[19]中进行了系统的测试并证明,其中最佳折叠和最稳定的SCFV(单链抗体片段)可以从具有识别结合常数的一组SCFV中选择,但具有不同的热力学和折叠性和折叠性质。
NORGEN的纯化技术纯化基于自旋色谱柱色谱法。噬菌体DNA优先纯化从其他细胞成分(例如蛋白质)中纯化,而无需使用苯酚,氯仿或氯化葡萄球菌。此过程的起始材料被阐明了噬菌体上清液,该噬菌体上清液已与液体培养物中的细菌碎片分离。最初,噬菌体颗粒通过提供的裂解缓冲液B通过热和化学裂解过程裂解(请参阅第4页的流程图)。异丙醇被添加到裂解物中,并将溶液加载到自旋柱上。Norgen的自旋柱以取决于离子浓度的方式结合核酸,因此只有DNA才能与柱结合,而大多数RNA和蛋白质在流潮中除去。然后用提供的洗涤溶液A洗涤结合的DNA,以去除剩余的杂质,并用洗脱缓冲液洗脱纯化的总DNA。纯化的总噬菌体DNA是最高的完整性,可用于许多下游应用。
噬菌体通常被简单地称为噬菌体,是专门针对和感染细菌的病毒。这些微观实体是地球上最丰富的生物,在任何给定的环境中,人数超过10至1的细菌。尽管尺寸很小,但噬菌体对自然世界有重大影响,并且越来越多地探索其在医学,农业和生物技术方面的潜力。它们由包围其遗传物质的蛋白质外套组成。噬菌体的结构可以很大变化,有些具有简单的球形形状,而另一些则具有复杂的,尾巴状的结构,可促进它们对细菌细胞的附着。
抽象细菌及其病毒捕食者(噬菌体)不断发展以相互颠覆。许多抑制噬菌体的细菌免疫系统是根据可以水平传播到多种细菌的流动遗传元素编码的。尽管细菌中免疫系统普遍存在,但这些免疫系统是否常常在自然界遇到的噬菌体作用。此外,有限的例子证明了这些噬菌体如何应对这种免疫系统。在这里,我们确定了具有编码细菌免疫系统DARTG的新型遗传元素的全球病原体弧菌霍乱的临床分离株,并揭示了免疫系统对共同循环裂解噬菌体ICP1的影响。我们表明,DARTG抑制ICP1基因组复制,从而防止ICP1斑块。我们通过识别反击DARTG并允许ICP1后代生产的ICP1编码蛋白来进一步表征DARTG介导的防御与ICP1之间的冲突。最后,我们将这种蛋白ADFB识别为一种功能性抗毒素,ABRO可能通过直接相互作用大门。在临床V.霍乱分离株中检测DARTG系统后,我们观察到ICP1分离株与功能性抗毒素的增加。这些数据强调了对霍乱弧菌及其裂解噬菌体的监视使用,以了解细菌与其自然界噬菌体之间的共同进化武器竞赛。
摘要 Öz 目的:近年来,许多重要细菌群落对抗生素的耐药性不断增加,导致人们对噬菌体分离和表征以及噬菌体不断扩大的临床潜力的文献兴趣日益浓厚。考虑到抗菌素耐药性特征,分离用于治疗鲍曼不动杆菌感染的噬菌体、确定其作用谱并进行表征非常重要。本研究旨在从环境水源中分离针对目标微生物鲍曼不动杆菌的特异性噬菌体。材料和方法:研究了 16 种不同的环境水样作为噬菌体的潜在来源。以具有多重耐药性的鲍曼不动杆菌临床分离株作为宿主细菌。使用单噬斑分离法分离针对目标细菌的特异性噬菌体。在体外研究期间,使用双琼脂法增加分离噬菌体的滴度,并评估其噬斑形态和宿主特异性。结果:噬菌体 vB_KlAcineto13 仅对目标细菌表现出溶解活性,不会感染其他细菌分离株。结论:根据本研究的结果,可以得出结论,噬菌体 vB_KlAcineto13 的宿主范围较窄,不会感染宿主细菌以外的其他测试细菌。然而,特性研究可能会提供有关噬菌体的更多详细信息。
由于最近的发现工作,已经发现了由细菌编码的100多个免疫系统,这些系统被拮抗了噬菌体(噬菌体)复制。这些系统采用直接和间接机制来检测噬菌体感染并激活细菌免疫。最有研究的机制是通过噬菌体相关的分子模式(phamp)(例如噬菌体DNA和RNA序列)直接检测和激活,并表达直接激活流产感染系统的噬菌体蛋白。噬菌体效应子也可能抑制宿主过程,因此间接激活免疫力。在这里,我们讨论了我们当前对在激活免疫力的噬菌体生命周期的各个阶段表达的这些蛋白质含量和效应子。免疫激活剂主要是通过分离出逃脱细菌免疫系统的噬菌体突变体的遗传方法来鉴定的,再加上生化验证。尽管对于大多数系统而言,噬菌体介导的激活的机制仍然不确定,但很明显,噬菌体生命周期的每个阶段都有可能诱导细菌免疫反应。