摘要:高粒度定时探测器(HGTD)是ATLAS二期升级的重要组成部分,用于应对极高的堆积密度(平均每个束流团穿越的相互作用次数可达200次)。利用径迹的精确定时信息(σt~30ps),可以在“四维”空间进行径迹到顶点的关联。传感器选用低增益雪崩探测器(LGAD)技术,可提供所需的定时分辨率和良好的信噪比。日本滨松光子学株式会社(HPK)已生产出厚度为35 μm和50 μm的LGAD,中国科学技术大学也与中国科学院微电子研究所(IME)合作开发并生产了50 μm LGAD样机。为评估抗辐照性能,传感器在JSI反应堆设施中接受中子辐照,并在中国科学技术大学进行测试。在室温(20 ℃ )或−30 ℃ 下,通过I-V和C-V测量表征辐照对增益层和本体的影响。提取了击穿电压和耗尽电压,并将其表示为通量函数。受体去除模型的最终拟合得出HPK-1.2、HPK-3.2和USTC-1.1-W8的c因子分别为3.06×10 −16 cm −2、3.89×10 −16 cm −2和4.12×10 −16 cm −2,表明HPK-1.2传感器具有最耐辐照的增益层。采用一种新颖的分析方法进一步利用数据得到c因子与初始掺杂浓度之间的关系。关键词:LGAD;HGTD;定时探测器;硅探测器中图分类号:TL814文献标识码:A
另一种可能性是永动机,在这方面,星际飞船的速度是第二个问题,但第一个问题是如何设计这样一个物体,使其在没有任何燃料或外部阈值或触发器的情况下永远运动下去。用于星际旅行的最多的概念是量子泡沫或宇宙时空结构的“曲速引擎”,这个概念是创造这样的曲速引擎,它可以扭曲时空或在超空间中旅行。由于量子力学效应,量子泡沫是空间结构中每个小尺度上的时空波动。高维运输飞船也具有四维或更像太空中的宇宙立方的导航能力,可以探索和进入新的不同的宇宙,这个宇宙有完全不同的规律、物体、行星、恒星和形状,有可能出现与人类相比最具智慧的生命形式。黑洞、虫洞和超空间可以使这一切成为可能,但这方面需要超高速宇宙飞船,因为在“事件视界”甚至光也无法通过奇点,而奇点处的引力巨大,时间在这里终结。我担心,要前往数十亿万光年之外的星系、超级星系团、星际、多元宇宙或最终存在的全能宇宙,我们需要这样一种运输飞船,其速度是光速的几倍。因此解决方案可能是基于“超光速”粒子或基于第赫子粒子的航天器工程,这是一种假设的粒子,其速度总是比光速快。另外,另一种可能性是基于“中微子”的宇宙飞船进行星际或太空旅行,中微子是一种与电子非常相似的亚原子粒子,但不带电荷,质量可以忽略不计,可以假设为零。
再生医学是即将到来的医学领域,重点是代替因创伤和疾病过程而损失的组织。它采用组织工程原理来再生组织以恢复形式,功能和美学。在全球许多受影响的人中需要替代丢失的组织,开发一个个性化的,预测的治疗选择是需要小时。三维(3D)生物打印是使用增材制造的一种组织工程方法的一种形式,该形式使用3D成像方式和计算机辅助设计软件在三维生物构图组织和器官中逐层使用多种生物材料以定制和特定的模式划分[1]。这项技术的多功能性,定制和精确性为其与其他基于脚手架的再生方式相比具有优势,这无法模仿复杂组织的复杂结构,生物学和空间分布[2]。它具有生物打印组织和器官的潜力,从而减少了器官移植的指数需求。它也将使体外组织模型的生物打印用于药物分析,从而减少了动物模型测试的需求。此外,使用添加剂制造的3D打印技术比减法制造和常规制造更具环境友好。将主要天然组件用于生物打印应用,使它们更加生物相容性,可生物降解和环境友好。它在制药和医疗保健行业中已广泛使用。随着生物医学和组织工程方法的进步,3D生物打印已成为潜在的灵丹妙药,使3D生物打印组织和器官成为现实。我们现在正处于具有四维(4D)印刷的新制造时代的悬崖上,这也考虑了时间的第四维度。
在过去的几十年中,使用三维(3D)印刷品的使用大大受益于患者特定的假肢,药物给药,组织和器官的制造以及手术计划的发展。由于美利坚合众国于2015年发起了精密医学计划,因此对定制医疗保健的热情增加了。简而言之,“个性化医学”一词是指针对患者量身定制的医疗服务。尽管如此,在3D打印中使用的生物医学材料通常是稳定的,在人体的内部环境中无法做出反应或自适应和聪明。以前的制造,其中包括在将其释放到目标表面之前在平坦的基材上打印,可能会导致印刷部分和目标区域之间的差异。3D打印是一种可用于提供自定义治疗的方法。在采用可以通过刺激进行调整的组件时,开发了四维(4D)打印。一些研究人员最近一直在研究一个将药物与3D和4D打印融合的新领域。4D打印的开发克服了许多此类问题,并为生物医学行业创造了一个有希望的未来。已预编程的智能材料可用于4D打印中,以创建与外部刺激相互作用的结构。尽管有这些好处,但使用4D技术创建的动态材料仍在其开发中。结果,出现了有关药品和配方的几种想法,这些想法可能被定制和印刷。此外,Spritam®是由3D打印生产的第一家药物,确实已经到达了医疗设施。本文提供了几种3D和4D打印技术的摘要,以及它们在制药行业中如何用于定制医学和药物输送系统。
M. Buljan,1 S. R. C. Pinto,2 A. G. Rolo,2 J. Martín-Sánchez,2 M. J. M. Gomes,2 J. Grenzer,3 A. Mücklich,3 S. Bernstorff,4 and V. Holý5 1 Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia 2 Centre of Physics and Department of Minho大学物理学,校园De Gualtar,4710-057 Braga,葡萄牙3 Forschungszentrum Dresden-Rossendorf,E.V.,P.O。Box 510119, 01314 Dresden, Germany 4 Sincrotrone Trieste, SS 14 km163, 5, 34012 Basovizza, Italy 5 Charles University in Prague, Ke Karlovu 5, 121 16 Prague, Czech Republic In this work we report on a self-assembled growth of a Ge quantum dot lattice in a single 600- nm-thick GE+Al2O3层在登高的底物温度下的GE+Al2O3混合物的磁控溅射沉积中。自组装导致在整个沉积体积内形成良好的三维三维四维四维四方量子点晶格。形成的量子点的大小小于4.0 nm,尺寸分布狭窄,堆积密度较大。可以通过更改沉积参数来调整量子点晶格的参数。通过扩散介导的成核和表面形态效应来解释量子点的自我顺序,并通过动力学蒙特卡洛模型模拟。I.最近的研究表明,与通常使用的融合二氧化硅相比,AL2O3矩阵具有许多优势,因为氧化铝具有更高的介电常数,出色的热和机械性能,并且更适合作为内存设备中的大门的建筑材料。17因此,在Alumina Matrix中生产了适用于新材料的Alumina Matrix中固定有序的GE QD的生产。引言半导体量子点(QD)在过去几年中已被广泛研究,因为它们具有有趣的物理特性和巨大的技术应用潜力。1-6正常订购的QD具有特殊的兴趣,因为空间规律性意味着QDS尺寸的狭窄范围,对于QDS的范围狭窄,对于更为明显的量子量化和集合的范围,其势能构成的范围非常重要,其势能效应,并因此效应,并在QD上效应,并且QD的效果效果很大。 Sio2或Al2O3(例如Sio2或Al2O3)具有许多有趣的属性,例如非常强的量子限制,电发光和光致发光,非线性折射率,长期保持电荷等可能性等等。10-16,因此它们在基于NAnotechnology中应用,尤其是基于QD的模拟和SENSORS。最近报道了二氧化硅基质中GE QD的自我排序增长,但7,8,18,19没有针对氧化铝进行类似的研究。值得注意的另一个重要特征是,仅通过晶体和无定形系统中的多层沉积才能实现QD晶格的自定序生长6,7,而在连续较厚的层中尚未发现类似的观察结果。在这里,我们介绍了在连续沉积GE+Al2O3混合物期间,氧化铝基质中GE QD的自组装生长的研究,产生了近似厚度为600 nm的单层。结果是形成了QD的大型且有序的三维3D QD晶格,其以身体为中心的四方BCT排列。调整沉积参数,可以操纵QD大小和QD晶格的参数。形成的QD的尺寸是均匀的,并且它们的空间密度可能非常大,因为它们的尺寸很小和距离。观察到的自我顺序的驱动力是通过表面形态学效应来解释的,即通过扩散介导的成核和表面最小值中成核的概率的结合。正如我们稍后显示的,氧化铝中GE QD的自我排序的特性不同于二氧化硅的自我序列。
16在当代时代,新颖的制造技术(如添加剂制造(AM)17)彻底改变了不同的工程领域,包括生物医学,航空航天,18个电子产品等。四维(4D)智能材料的印刷(4D)在科学界中广受欢迎,该社区具有出色的能力,可以制作20种软机器人,执行器和握手等柔软结构。这些软结构是通过将21种各种刺激(例如pH,温度,磁场和许多组合)应用于软22材料而开发的。3D打印中的刺激允许各种形状变形行为,例如弯曲,23扭曲,折叠,肿胀,滚动,滚动,收缩,折纸或运动。可以通过将软磁性或硬磁性25颗粒掺入软材料中,从而产生磁性柔软的材料(MASM)来制造各种各样的软24磁性结构。通过这26个集成,磁性热耦合致动允许多样化的磁性变形,27促进了能够增强28变形的个性化设备的开发。在这篇综述中,在3D打印上提供了针对29种磁性活性聚合物(地图),磁性活性复合材料以及磁性的水凝胶30(MAHS)的指南,以促进各种智能和灵活的设备的繁荣开发,例如软机器人,例如31可耐磨机器,可耐磨的电子设备和生物材料。3D打印的软机器人技术具有32个出色的能力,可适应许多高级促使33个应用程序的复杂情况。最后,提出了这项令人兴奋的技术34的当前挑战和新兴领域。最后,预计开发35种智能和智能磁性结构的技术进步将对36个现实世界应用的设计产生重大影响。
摘要 - 确定脑血流动力学在诊断和治疗各种脑血管疾病中起着至关重要的作用。在这项工作中,我们提出了一个具有物理信息的深度学习框架,该框架通过一维(1D)降低阶模型(ROM)模拟来增强稀疏的临床测量,以生成具有高时空分辨率的物理一致的脑血液动力学参数。经颅多普勒(TCD)Ul-Trasound是当前临床工作流中最常见的技术之一,可以使大脑动脉内血流速度进行非侵入性和无创的评估。然而,由于颅骨的声窗受到限制的可访问性,因此在空间上仅限于脑桥一次的少数位置。我们的深度学习框架在大脑的几个位置使用了体内实时TCD速度测量,结合了从3D血管造影图像获得的基线容器横截面区域,并提供了整个大脑脉管中的速度,面积和压力的高分辨率图。我们验证了通过四维(4D)流磁共振成像(MRI)扫描获得的体内速度测量值的预测。然后,我们通过成功预测基于相应的稀疏速度测量值的血管痉挛局部血管直径的变化来展示该技术在诊断脑血管痉挛(CVS)中的临床意义。我们通过在各种狭窄水平的大脑血管痉挛后产生合成的血流数据来显示这种能力。在这里,我们证明了基于物理学的深度学习方法可以估计和量化特定于主体的大脑血液动力学变量,尽管缺乏对入口和让边界条件的了解,但这是常规纯粹基于物理学模型的准确性的显着限制。
4D 四维 AAM 先进空中机动 AC 咨询通告 ACM 飞机一致性监视器 ADS 进场和离场调度器 ANSP 空中导航服务提供商 ARMD 航空研究任务理事会 ASTM 美国材料与试验协会 ATC 空中交通管制 BDD 行为驱动开发 CIWS 走廊综合气象系统 CLIN 合同项目编号 CNS 通信、导航和监视 ConOps 作战概念 CSS 网络安全服务 DMS 数据管理系统 DNS 域名系统 DOS 拒绝服务 DoDAF 国防部架构框架 ePIC 电子飞行员指挥 FAA 联邦航空管理局 FOCC 机队作战控制中心 FOD 异物碎片 GUI 图形用户界面 HIS 危险识别服务 HDV 高密度 Vertiplex IASP 综合航空系统计划 NASA 美国国家航空航天局 NC 全国运动 NEXRAD 下一代气象雷达 NIST 美国国家标准与技术研究所 NOTAM 飞行员通告 NUAIR 东北无人机系统空域整合研究联盟 PIC 指挥飞行员 PSU 城市空中交通服务提供商 RAS 风险评估服务 RESTful 表述性状态转移 RM 资源管理器 RMSS 资源管理和调度服务 RPIC 远程指挥飞行员 SDR 系统设计评审 SDSP 补充数据服务提供商 SIC 副指挥 SPD 系统性能仪表板 SQL 结构化查询语言 STS 地面轨迹服务 SvcV-1 服务视点一 SvcV-4 服务视点四 TAF 终端机场预报 TFR 临时飞行限制 TLOF 着陆和升空 UOE 城市空中交通运营环境 UAM 城市空中交通 UML-4 城市空中交通成熟度四级
4D 四维 AAM 先进空中机动 AC 咨询通告 ACM 飞机一致性监视器 ADS 进场和离场调度器 ANSP 空中导航服务提供商 ARMD 航空研究任务理事会 ASTM 美国材料与试验协会 ATC 空中交通管制 BDD 行为驱动开发 CIWS 走廊综合气象系统 CLIN 合同项目编号 CNS 通信、导航和监视 ConOps 作战概念 CSS 网络安全服务 DMS 数据管理系统 DNS 域名系统 DOS 拒绝服务 DoDAF 国防部架构框架 ePIC 电子飞行员指挥 FAA 联邦航空管理局 FOCC 机队作战控制中心 FOD 异物碎片 GUI 图形用户界面 HIS 危险识别服务 HDV 高密度 Vertiplex IASP 综合航空系统计划 NASA 美国国家航空航天局 NC 全国运动 NEXRAD 下一代气象雷达 NIST 美国国家标准与技术研究所 NOTAM 飞行员通告 NUAIR 东北无人机系统空域整合研究联盟 PIC 指挥飞行员 PSU 城市空中交通服务提供商 RAS 风险评估服务 RESTful 表述性状态转移 RM 资源管理器 RMSS 资源管理和调度服务 RPIC 远程指挥飞行员 SDR 系统设计评审 SDSP 补充数据服务提供商 SIC 副指挥 SPD 系统性能仪表板 SQL 结构化查询语言 STS 地面轨迹服务 SvcV-1 服务视点一 SvcV-4 服务视点四 TAF 终端机场预报 TFR 临时飞行限制 TLOF 着陆和升空 UOE 城市空中交通运营环境 UAM 城市空中交通 UML-4 城市空中交通成熟度四级
2013 年,Tibbits 提出了“四维打印”(或 4D 打印)的概念 [1]。他使用喷墨打印机打印活性(或可编程)聚合物复合材料,其形状可以在水下随时间演变。不久之后,Qi 等人提出了打印活性复合材料 (PAC) 的概念,该复合材料可以利用形状记忆聚合物 (SMP) 转变为各种复杂的结构 [2]。这些开创性的工作开辟了 4D 打印的新领域,引起了研究界和工业界越来越多的关注。在图 1.1a 中,示意图显示了从一维 (1D) 到 4D 的结构差异。结构在从一维到三维 (3D) 的维度上显示出更高的复杂性。4D 打印最初被定义为“3D 打印形状 + 时间”,其中第四维是时间 [2–6]。目前,4D打印的定义已经扩大,不仅包括形状,还包括打印后在预定刺激下随时间变化的3D打印结构的属性和功能。在4D打印技术中,刺激响应性材料和适当的结构设计通常用于形状可编程结构的3D打印。与传统的3D打印静态物体相比,4D打印结构能够在外界刺激下随时间改变其形状、大小、颜色或其他功能特性。打印后按需改变形状和属性有几个突出的优势。首先,它允许直接制造智能结构/设备。其次,它节省了打印时间和材料,特别是对于薄壁结构制造。第三,它可以节省打印部件的储存和运输空间[7]。由于这些原因,4D打印已成为智能材料和先进制造等各个学科中快速发展的研究领域。得益于 3D 打印技术、刺激响应材料以及基于设计和建模的方法的巨大进步,4D 打印在过去几年中取得了重大进展 [3, 8–11]。3D 打印或增材制造 (AM) 已成为先进制造业的颠覆性技术 [12, 13]。