两栖动物非洲爪蟾是一种功能强大、用途广泛且经济高效的非哺乳动物模型,可用于研究与人类健康相关的当代重要免疫问题,例如免疫的个体发育、自我耐受、伤口愈合、自身免疫、癌症免疫、免疫毒理学以及宿主免疫防御对新出现的病原体的适应。该模型系统具有几个吸引人的特征:外部发育环境不受母体影响,可从生命早期阶段轻松进行实验;免疫系统与哺乳动物的免疫系统非常相似;可获得大规模遗传和基因组资源;无价的主要组织相容性复合体 (MHC) 定义的青蛙近交系;以及有用的工具,例如淋巴肿瘤细胞系、单克隆抗体和 MHC 四聚体。应用于免疫功能的现代反向遗传功能丧失和基因组编辑技术进一步增强了该模型。最后,非洲爪蟾与哺乳动物之间的进化距离使我们能够区分物种特异性适应与免疫系统更保守的特征。在本介绍中,概述了非洲爪蟾在免疫学研究中的优势和特点,以及使用该模型系统的现有工具、资源和方法。
在肺和所有其他器官之间转运氧气和二氧化碳,红细胞依赖于成人血红蛋白(HBA),一种含有两个α-珠蛋白和两个β-环球蛋白亚基的四聚体蛋白。患有功能障碍或β-珠蛋白量不足的患者患有世界上最常见的生命遗传疾病,共同称为β-血红蛋白疾病。这些疾病的分子病理生理,例如镰状细胞疾病,已经闻名了多年,但治疗选择仍然非常有限。[1]镰状细胞疾病是由编码基因HBB的点突变引起的,该基因HBB导致受影响的镰状血红蛋白(HBS)在低氧条件下聚合。结果,红细胞变成镰状的,倾向于阻塞毛细血管,这会导致整个体内缺血性损害的积累。基因治疗对治疗治疗有很大的希望,[2]但是,大多数居住在低收入和中等收入国家的患者[3]大多数患者无法获得基因治疗所需的医疗基础设施。迫切需要以口服药物的形式进行治疗。出生前,红细胞表达胎儿血红蛋白(HBF),其中包含两个α-珠蛋白和两个γ-珠蛋白亚基。出生后,从γ-珠蛋白转换为β -Globin
整个生命过程中的组织氧合取决于血红蛋白 (Hb) 的活性,血红蛋白是一种血红素蛋白,它结合肺部的氧气并确保氧气输送到全身。Hb 由四个单体组成,由八个不同的基因编码,这些基因的表达在发育过程中受到严格调控,导致每个发育阶段形成不同的血红蛋白四聚体。改变血红蛋白结构或其受调控表达的突变会导致一大群疾病,通常称为血红蛋白病,是全球最常见的遗传缺陷之一。过去几十年来,前所未有的努力部分揭示了控制整个发育过程中珠蛋白基因表达的复杂机制。此外,全基因组关联研究揭示了能够改善严重血红蛋白病临床表现的保护性遗传特征。这些知识推动了对创新治疗方法的探索,旨在修改受影响细胞的基因组或表观基因组,以恢复血红蛋白功能或模仿保护性特征的影响。这里我们描述了控制发育过程中不同珠蛋白基因表达转换的关键步骤,并强调了为治疗目的改变珠蛋白调控的最新努力。
乳头状甲状腺癌(PTC)的特征是T细胞及过滤,并且经常以抗硫代表球蛋白抗体(TGAB)的存在。在这种情况下,细胞免疫和TBAB的作用是争论的问题。我们研究的目的是将TGAB,肿瘤表位特异性T细胞的存在与PTC患者的临床结果相关联。我们研究了n = 183例诊断为PTC的患者,这些患者接受了总甲状腺切除术和131 I消融治疗。在平均97个月的随访期间,大多数PTC患者没有肿瘤复发的迹象(n = 157例)。相反,一名患者的血清TG水平高于检测极限,<1 ng/mL,两个患者TG血清水平≥1ng/ml和<2 ng/ml,n = 23例患者的Tg血清水平≥2ng/ml。在14例患者中看到了肿瘤复发的形态迹象。所有这些患者的血清TG水平≥2ng/mL。重要的是,除一名患者外,所有TGAB阳性PTC患者(n = 27)没有肿瘤复发的迹象,因为血清TG水平低于该测定功能敏感性。四聚体分析显示。总而言之,我们表明TGAB的发生可能会影响PTC患者的临床结果。这可能是由于PTC患者的肿瘤表位特异性细胞免疫。
纯蛋白L.L.C.任命Rico Buchli博士为俄克拉荷马州俄克拉荷马城首席科学家,2024年9月17日 - Pure Protein L.L.C. 自豪地宣布任命Rico Buchli博士为首席科学家。 在他的新职位上,布赫利博士将领导科学计划,并监督公司免疫产品和服务组合的扩展。 这一战略举动强调了纯蛋白质对为全球研究和诊断社区提供创新的高质量试剂的承诺。 Buchli博士在二十年中拥有杰出的职业生涯,其中包括纯蛋白质研究总监23年,以及3年的产品和服务副总裁。 他以其可溶性HLA技术领域的开创性工作而闻名,这极大地影响了免疫疗法研究,尤其是在移植诊断和抗原靶向平台方面。 他的贡献在肿瘤学,传染病和自身免疫性疾病方面进行了高级研究,将纯蛋白定位为HLA试剂和测定平台的领导者。 作为首席科学家,Buchli博士将专注于扩展和完善纯蛋白的产品,重点是为免疫疗法,移植诊断和癌症免疫学研究提供出色的HLA解决方案。 这将包括重组单体,四聚体和测定平台的开发,对于T细胞分析,疫苗开发和了解自身免疫性疾病所必需的必不可少的平台。 他的领导层将推动公司的创新,确保为客户开发定制的解决方案,同时保持最高的科学严谨标准。任命Rico Buchli博士为俄克拉荷马州俄克拉荷马城首席科学家,2024年9月17日 - Pure Protein L.L.C.自豪地宣布任命Rico Buchli博士为首席科学家。在他的新职位上,布赫利博士将领导科学计划,并监督公司免疫产品和服务组合的扩展。这一战略举动强调了纯蛋白质对为全球研究和诊断社区提供创新的高质量试剂的承诺。Buchli博士在二十年中拥有杰出的职业生涯,其中包括纯蛋白质研究总监23年,以及3年的产品和服务副总裁。 他以其可溶性HLA技术领域的开创性工作而闻名,这极大地影响了免疫疗法研究,尤其是在移植诊断和抗原靶向平台方面。 他的贡献在肿瘤学,传染病和自身免疫性疾病方面进行了高级研究,将纯蛋白定位为HLA试剂和测定平台的领导者。 作为首席科学家,Buchli博士将专注于扩展和完善纯蛋白的产品,重点是为免疫疗法,移植诊断和癌症免疫学研究提供出色的HLA解决方案。 这将包括重组单体,四聚体和测定平台的开发,对于T细胞分析,疫苗开发和了解自身免疫性疾病所必需的必不可少的平台。 他的领导层将推动公司的创新,确保为客户开发定制的解决方案,同时保持最高的科学严谨标准。Buchli博士在二十年中拥有杰出的职业生涯,其中包括纯蛋白质研究总监23年,以及3年的产品和服务副总裁。他以其可溶性HLA技术领域的开创性工作而闻名,这极大地影响了免疫疗法研究,尤其是在移植诊断和抗原靶向平台方面。他的贡献在肿瘤学,传染病和自身免疫性疾病方面进行了高级研究,将纯蛋白定位为HLA试剂和测定平台的领导者。作为首席科学家,Buchli博士将专注于扩展和完善纯蛋白的产品,重点是为免疫疗法,移植诊断和癌症免疫学研究提供出色的HLA解决方案。这将包括重组单体,四聚体和测定平台的开发,对于T细胞分析,疫苗开发和了解自身免疫性疾病所必需的必不可少的平台。他的领导层将推动公司的创新,确保为客户开发定制的解决方案,同时保持最高的科学严谨标准。“我们很高兴地宣布将布赫利博士晋升为首席科学家,”首席执行官汤米·哈兰(Tommy Harlan)说。“在他的领导下,纯蛋白质有望继续其科学卓越的遗产,推进免疫学,肿瘤学和个性化医学,同时扩大其对全球研究界的影响”。作为产品和服务的副总裁,Buchli博士将通过与领先的制药公司,研究机构和临床实验室的合作进行合作,以确保纯蛋白质的医疗研究削减工具的可及性,以促进纯蛋白质的全球影响力。关键优先事项将是扩大公司的HLA产品组合,以通过使产品开发与研究人员和临床医生的需求相结合,以提供高质量的工具和试剂,从而满足治疗领域的需求。
兰氏蛋白心脏淀粉样蛋白病(ATTR-CA)代表一种无情的渐进性和致命的心肌病。对导致经甲状腺素蛋白错误折叠的潜在发病机制以及随后在心肌内的淀粉样蛋白原纤维的积累导致了几种在疾病途径不同阶段起作用的疾病改良疗法的发展。tafamidis是第一个,迄今为止仍然是唯一批准用于治疗Attr-CA的治疗方法,与阿ac虫一起稳定了甲状腺素四聚蛋白四聚体,防止分类,偏置和形成淀粉样纤维纤维。基因沉默剂,例如Patisiran,vutrisian和eplontersen,以及新型的基因编辑疗法,例如NTLA-2001,可以减少经硫代蛋白的肝合成。抗淀粉样蛋白疗法代表了Attr-CA治疗的另一种策略,旨在结合淀粉样蛋白原纤维表位并刺激巨噬细胞介导的从心肌中去除淀粉样蛋白原纤维。其中许多治疗方法处于早期研究阶段,但代表了未满足的临床需求的重要领域,即使在患有晚期疾病的患者中,也可能会逆转疾病并恢复心脏功能。
基于染色质的表观遗传记忆依赖于父母组蛋白H3 - H4四聚体的准确分布到新复制的DNA链。mcm2,复制酶的亚基和DPB3/4,DNA聚体酶ε的亚基,分别控制着父母组蛋白H3 - H4沉积到滞后和领先链中。但是,它们对表观遗传的贡献仍然存在争议。在这里,使用裂变酵母异染色质遗传系统消除了引发途径的干扰,我们表明MCM2组蛋白结合突变会严重破坏异染色质的遗传,而DPB3/4中的突变仅导致中度缺陷。令人惊讶的是,MCM2和DPB3/4的同时突变稳定异染色质遗传。ESPAN(蛋白质相关的新生DNA的富集和抑制)分析证实了在亲本组蛋白H3 - H4分离中的MCM2和DPB3/4功能的保存,其合并缺失显示出与单个单独突变相比,它们更对称性H3 - H4的对称分布。此外,组蛋白伴侣伴侣调节父母组蛋白转移到链中,并与MCM2和DPB3/4合作,以维持亲本组蛋白H3 - H4 - H4密度和忠实的异染色质遗传。这些结果强调了父母组蛋白的符号分布及其在DNA复制过程中父母组蛋白伴侣伴侣的表观遗传遗传和揭示出独特特性的符号分布的重要性。
线粒体 Ca 2 + 吸收由高度选择性通道线粒体钙单向转运体 (MCU) [1-4] 介导,并响应各种生理刺激而发生,这些刺激通常由内质网释放 Ca 2 + 触发。MCU 复合物的核心成分包括成孔亚基(即 MCU 和必需 MCU 调节器 [EMRE])和调节蛋白(即 MCUb、MCUR1、MICU1、MICU2、MICU3、LETM1 和 SLC25A23)。多项研究已阐明了 MCU 单独和与 EMRE 结合的结构 [4],揭示了与 EMRE 具有 1:1 化学计量的四聚体结构。MCU 复合物成分的遗传变异与多种疾病的发展有关,表明该通道在生物体生理学中发挥重要作用。例如,MCU 过表达与肺癌、胃癌和肝癌的进展有关。此外,MCU 正向调节肌纤维大小,而骨骼肌特异性 MCU 缺失会抑制肌纤维线粒体 Ca 2 + 摄取,导致肌肉力量和运动表现受损。据报道,近端肌病、学习困难和锥体外系运动障碍患者存在调节成分 MICU1 的突变 [5]。此外,MICU1 在 db/db 小鼠心脏中下调,这导致糖尿病患者心肌细胞凋亡。MICU2 的纯合截短突变会导致严重的神经发育障碍,影响近亲患者。此外,MICU2 的沉默最近与胰腺 β 细胞功能受损有关。总之,这些发现令人信服地描绘了 MCU 复合物在维持正常细胞功能方面的生理重要性。考虑到线粒体 Ca 2 +
描述EP1563Y重组单克隆抗体与乳酸脱氢酶(LDH)结合。该四聚体细胞质酶属于2-羟基酸氧化还原酶家族,其亚基由LDHA,LDHB,LDHC和LDHD基因编码。EP1563Y专门识别LDH-A,LDH-B和LDH-C。 LDH-A and LDH-B can form 5 tetrameric isoenzymes: LDH-1 (highly expressed in heart and erythrocytes), LDH-2 (reticuloendothelial system, erythrocytes), LDH-3 (lungs), LDH-4 (kidneys) and LDH-5 (liver, skeletal muscle, brain). LDH-C在睾丸中特异性表达。 LDH在厌氧代谢途径中具有关键作用,因为它在可逆反应中催化乳酸和丙酮酸的合成,是糖生成和DNA代谢的重要检查点。 LDH被某些疾病(例如癌症)中的细胞过表达,并且由于受伤或疾病引起的组织损伤,可以释放到血液中。EP1563Y专门识别LDH-A,LDH-B和LDH-C。 LDH-A and LDH-B can form 5 tetrameric isoenzymes: LDH-1 (highly expressed in heart and erythrocytes), LDH-2 (reticuloendothelial system, erythrocytes), LDH-3 (lungs), LDH-4 (kidneys) and LDH-5 (liver, skeletal muscle, brain).LDH-C在睾丸中特异性表达。LDH在厌氧代谢途径中具有关键作用,因为它在可逆反应中催化乳酸和丙酮酸的合成,是糖生成和DNA代谢的重要检查点。LDH被某些疾病(例如癌症)中的细胞过表达,并且由于受伤或疾病引起的组织损伤,可以释放到血液中。
溶液核磁共振(NMR)光谱是一种强大的技术,用于分析原子分辨率下大分子的三维结构和动力学。最近的进步利用了NMR在交换系统中的独特特性,以检测,表征和可视化激发的生物大分子及其复合物的稀疏人口稠密的状态,这些状态仅是短暂的。这些状态对常规生物物理技术看不见,并且在许多过程中起着关键作用,包括分子识别,蛋白质折叠,酶催化,组装和原纤维形成。所有的NMR技术都利用稀疏人群的NMR不可或缺的NMR可视和高度填充的NMR可见状态之间的交换,以将磁化特性从无形状态传递到可见的状态,在该状态下可以轻松检测和量化。有三类的NMR实验依赖于NMR可见和可视化物种之间距离,化学移位或横向松弛(分子质量)的差异。在这里,我说明了这些方法在亨廷顿基因的Exon-1编码的N末端区域的核核前核酸前寡核酸的复杂机制,在此中,CAG扩展了CAG的扩展,导致亨廷顿氏病,导致亨廷顿疾病,是一种致命的自身植物神经变性。我还讨论了四聚体的抑制如何阻止纤维形成的较慢(许多数量级)过程。