摘要。分子遗传学研究使得确定多因素疾病 (MFD) 与许多特定 SNP 的关联成为可能,这些 SNP 对 MFD 发病机制的影响通常很难解释。这是因为寻找这些 SNP 影响机制的策略过于片面,主要局限于确定这些多态性位于其附近或内部的蛋白质编码基因的作用。本文提供了有关 SNP 影响 MFD 发病机制的机制的数据,这些机制是由于转座因子的变化导致其激活、功能障碍或对外源性病毒感染的易感性。结果,转座因子与特定蛋白质、非编码 RNA 和表观遗传因素的关系发生变化,这是 MFD 发展的诱因。事实上,大多数与疾病相关的 SNP 位于基因的内含子和调控区域以及基因间区域。人类基因组的转座因子也位于这些位置。因此,特定 SNP 与某些 MFD 的关联是由于特定转座因子的不同活性。确定 SNP 对转座因子的影响在生物信息学研究中很有前景,可以构建这些因子在基因内和基因间区域的分布图,并识别受多态性影响的结构变化。以神经退行性疾病为例,已经表明,由于人类基因组中 SNP 所在区域的病理功能和逆转录因子的激活会导致这些 MFD 的发展。关键词:关联、多因素疾病、单核苷酸多态性、逆转录因子、转座因子、靶向治疗。
ZBTB7A属于一小部分转录因素,该因子在人类中有三个成员(7a,7b和7c)。他们在氨基端具有BTB/POZ蛋白相互作用结构域,在羧基端具有一个锌 - 纤维DNA结合域。他们控制着各种基因的转录,这些基因在造血,肿瘤发生和元质体(尤其是糖酵解)中具有不同的功能。ZBTB7A结合纤维包含共识g(A / C)CCC基序,在某些情况下以CCCC序列为止。的结构和突变研究表明,DNA特异性接触ZBTB7A的四纤维串联阵列是顺序形成的,是从ZF1 - ZF2结合到G(A / C)CCC(a / c)CCC的结合,然后扩散到ZF3 – ZF4之前的ZF2 - ZF2结合,该ZF3 – ZF4与DNA Backbone和3 0 CCC的结合。在这里,我们研究了在ZBTB7A DNA结合结构域内发生的T(8; 21) - 阳性急性髓样白血病患者中发现的一些突变。我们确定这些突变通常会损害ZBTB7A DNA的结合,最严重的破坏是由ZF1和ZF2突变引起的,而ZF3中的Frameshift突变最少,导致部分错误定位。在ZBTB7A上提供的信息 - DNA相互作用可能适用于ZBTB7B/C,它们在控制主要代谢时与ZBTB7A具有重叠的功能。
PAT 逆转录转座因子与其他逆转录因子的不同之处在于它们具有“分裂直接重复”结构,即发现内部 300bp 序列重复,每个因子末端约有一半重复。在带有 Northern 印迹的 Panagrellus redivivus 总 RNA 上检测到约 900nt 的非常丰富的转录本,其起始部分映射到 PAT 因子的优先删除部分。潜在对应的 ORF 编码具有羧基末端半胱氨酸基序的 265 个残基的蛋白质,据信这是逆转录因子中 GAG 蛋白的唯一特征。在 Northern 印迹上还检测到一个更暗淡的 1800nt 长的转录本,它位于第一个 ORF 的稍下游。该区域的预测蛋白质序列带有逆转录酶和 RNaseH 的典型基序,如在逆转录因子的 Pol 基因中发现的。肽基序与来自盘基网柄菌的DIRS-1元件最为相似。讨论了使用PAT元件作为秀丽隐杆线虫转座子标记系统的可能性。
结果:两组之间没有观察到食物摄入和体重的显着变化。然而,与货车组相比,VAD和VAS组在不同时间点显示出食物摄入量的降低。在认知功能方面,货车组在莫里斯水迷宫测试中表现更好,表明了出色的学习能力和记忆能力。VAD和VAS组表现出受损的性能,而VAS组的表现要比VAD组好。血清维生素A浓度之间的浓度显着不同,而VAS组的浓度最高。与van和VAS组相比,VAD组的Aβ水平显着更高。 微生物分析表明,VAS和VAS组的微生物多样性比VAD组高,而特定的分类单元表征了每个组。 货车组的特征是分类群,例如Actinohacteriota和Desulfovibrionaceae,而VAD组的特征是副翅目和Tannerellaceae。 VAS组显示Aβ水平显着更高。微生物分析表明,VAS和VAS组的微生物多样性比VAD组高,而特定的分类单元表征了每个组。货车组的特征是分类群,例如Actinohacteriota和Desulfovibrionaceae,而VAD组的特征是副翅目和Tannerellaceae。VAS组显示
流形潜在因子和神经观测之间的关系用带有 MLP 编码器和解码器网络的自动编码器 154 建模,其中流形潜在因子是瓶颈 155 表示。从神经观测到流形潜在因子的虚线仅用于 156 推理,不是生成模型的一部分。动态和流形潜在因子共同形成 157 LDM,其中流形因子是动态因子的噪声观测,构成 158 LDM 状态。动态潜在因子的时间演变用线性动态 159 方程描述。所有模型参数(LDM、自动编码器)都是在单次优化中联合学习的,通过最小化未来神经观测与过去的预测误差。在无监督 161 版本中,在训练 DFINE 模型之后,我们使用映射器 MLP 网络来学习 162 流形潜在因子和行为变量之间的映射。我们还扩展到监督式 DFINE,其中映射器 MLP 网络与所有其他模型参数同时进行训练,以达到优化效果,现在可以最小化神经和行为预测误差(方法)。(b)显示了使用 DFINE 的推理过程。我们首先使用每个时间点的非线性流形嵌入来获得流形潜在因子的噪声估计。借助动态方程,我们使用卡尔曼滤波来推断动态潜在因子 𝐱𝐱 𝑡𝑡|𝑘𝑘 并改进我们对流形潜在因子 𝐚𝐚 𝑡𝑡|𝑘𝑘 的估计,下标为
凝血疾病,导致严重的出血风险,可能是由自身抗体形成或编码凝血因子的基因突变引起的。在后一种情况下,抗体抗体(ADA)可能与用于替代疗法的凝血因子蛋白药物形成,这是X连接疾病血友病的良好记录。对VIII或IX因素的中和抗体实质上使治疗复杂化。针对VIII因子的自身抗体形成导致获得的血友病。 尽管很少见,但在治疗其他凝血因子缺陷时可能会发生抗体形成(例如,针对Von Willebrand因子[VWF])。 已经出现了解决这些免疫反应的主要策略包括(1)临床免疫耐受诱导(ITI)方案; (2)免疫抑制疗法(ISTS); (3)可以改善止血的药物的发展,同时绕过针对凝血因子的抗体(其中一些非因素疗法/NFT是基于抗体的,但它们与传统免疫疗法不同,因为它们不针对免疫系统)。 可以选择免疫或替代疗法以及选择用于遗传和自身免疫性出血疾病的特定方案的标准。 ITI是一个重要的原则证明,即即使没有免疫抑制,也可以通过反复给药来实现抗原特异性免疫耐受性。针对VIII因子的自身抗体形成导致获得的血友病。尽管很少见,但在治疗其他凝血因子缺陷时可能会发生抗体形成(例如,针对Von Willebrand因子[VWF])。已经出现了解决这些免疫反应的主要策略包括(1)临床免疫耐受诱导(ITI)方案; (2)免疫抑制疗法(ISTS); (3)可以改善止血的药物的发展,同时绕过针对凝血因子的抗体(其中一些非因素疗法/NFT是基于抗体的,但它们与传统免疫疗法不同,因为它们不针对免疫系统)。可以选择免疫或替代疗法以及选择用于遗传和自身免疫性出血疾病的特定方案的标准。ITI是一个重要的原则证明,即即使没有免疫抑制,也可以通过反复给药来实现抗原特异性免疫耐受性。最后,讨论了仍处于临床前阶段的新型免疫疗法方法,例如细胞(例如调节性T细胞[Treg])免疫疗法,基因治疗和口服抗原的给药。
细胞因子是小的信号蛋白,可调节对感染和组织损伤的免疫反应。细胞因子的表面电荷决定了它们在免疫调节中的体内命运,例如半衰期和分布。炎症和感染期间细胞外微环境和酸中毒的总体负电荷可能会通过控制组织居住特性来差异地影响具有不同表面电荷的细胞因子,以进行微调的免疫调节。但是,在文献中尚未阐明细胞因子表面电荷的趋势和作用。有趣的是,我们已经观察到大多数促炎性细胞因子的负电荷,而大多数抗炎细胞因子和趋化因子和趋化因子都有阳性电荷。在这篇综述中,我们广泛研究了所有细胞因子和趋化因子的表面电荷,总结了主要细胞因子的药代动力学和组织粘附,并分析了表面电荷与细胞因子生物分布,激活,激活,功能以及免疫调节中的功能。此外,我们确定了促疾病和抗炎细胞因子之间电荷差异的一般趋势是开发精确免疫调节方法的独特机会,可以应用于许多与炎症相关疾病,包括实心肿瘤,慢性伤口,感染和sepsis。
属于基本螺旋环螺旋(BHLH)家族的转录因子是开发过程中细胞命运规范和分化的关键调节因子。它们的失调不仅与发育异常有关,还与各种成人疾病和癌症有关。最近,BHLH因子的能力已在细胞置换疗法的重编程策略中被利用。这样一个因素是NeuroD1,它与表观遗传景观的重编程和潜在具有先锋因素能力,启动神经元发育程序以及执行胰腺内分泌差异有关。审查旨在巩固对人和小鼠细胞分化的多方面角色和机械途径的当前知识,并重新编程,探讨神经轨道在指导神经内分泌细胞谱系的发展和重编程中的作用。综述着重于NeuroD1的分子机制,其与其他转录因子的相互作用,其作为染色质重塑的先驱因子的作用以及其在细胞重编程中的潜力。我们还显示了神经1在分化神经元和胰腺内分泌细胞中的不同潜力,突出了其治疗潜力以及进一步研究的必要性,以充分理解和利用其功能。