日期:2021 年 5 月 建议固化温度:150°C / 1 小时 版本:XI 组分数:单组分 重量混合比:N/A 比重:3.07 适用期:28 天 保质期 - 散装:-40°C 下一年 保质期 - 注射器:-40°C 下一年 注意:● 不使用时,容器应保持封闭。● 混合前和使用前应彻底搅拌填充的系统。● 当进行双组分/注射器包装或任何类型的后处理时,产品的性能特性(流变性、导电性等)可能与数据表中所述的不同。Epoxy 的保证不适用于已从 Epoxy 交付状态/容器重新加工或重新包装到任何其他类型的容器中的任何产品,包括但不限于注射器、双组分、药筒、小袋、管子、胶囊、薄膜或其他包装。 ● 符合 MIL-STD 883/方法 5011 的要求。产品描述:EPO-TEK® H37-MP 是一种单组分、导电、触变性银填充粘合剂,用于混合微电子封装内的芯片连接和 SMD 连接。也可在冷冻注射器中使用。典型特性:固化条件:150°C / 1 小时不同批次、条件和应用会产生不同的结果。以下数据不保证。仅用作指南,不作为规范。* 表示以批次验收为基础的测试
日期:2020 年 6 月 建议固化方式:修订版:VI 预烘烤:30 分钟 @ 80°C(最大) 组分数:单一 固化:1 小时 @ 150°C(有或没有真空) 重量混合比:N/A 后固化:90 分钟 @ 285°C 比重:2.39 适用期:N/A 干燥时间:7 天 保质期 - 散装:室温下一年 注意事项: ● 不使用时,容器应保持封闭。 ● 在混合和使用前,应彻底搅拌填充体系。 ● 当进行双包装/注射器包装或任何类型的后处理时,产品的性能特性(流变性、导电性等)可能与数据表中所述的不同。 Epoxy 的保证不适用于任何已从 Epoxy 的交付状态/容器重新加工或重新包装到任何其他容器的产品,包括但不限于注射器、双包装、筒、袋、管、胶囊、薄膜或其他包装。产品描述:EPO-TEK® P1011 是一种单组分、改性聚酰亚胺、银填充粘合剂,专为微电子和光电子应用中的芯片粘合而设计。典型属性:固化条件:根据需要而变化不同的批次、条件和应用会产生不同的结果。以下数据不保证。仅供参考,不作为规范。* 表示以批次验收为基础的测试
摘要 — 计算建模通常用于设计和优化电子封装,以提高性能和可靠性。影响计算模型准确性的因素之一是材料性质的准确性。特别是微机电系统传感器,通常对封装中材料性质的细微变化极为敏感。因此,即使由于样品制备方法或测试技术不同而导致的材料特性测量值出现微小变化,也会影响用于设计或分析传感器性能的计算模型的准确性。对于需要固化的材料,材料特性的挑战更大。例如,芯片粘接聚合物在制造过程中具有严格的固化曲线要求。这种固化条件通常很难在实验室中复制,并且用于材料特性分析的样品不一定代表最终产品中的实际组件。本研究调查了温度固化曲线、固化过程中施加的压力以及样品制备技术等参数对两种芯片粘接弹性体随温度变化的热机械性能的影响。使用动态机械分析和热机械分析等一系列技术测量芯片粘接材料的机械性能,包括弹性模量 (E)、热膨胀系数和玻璃化转变温度。分析针对与典型传感器应用相对应的宽温度范围进行。结果表明,样品制备和表征技术对测量有相当大的影响,从而通过计算建模得出不同的 MEMS 传感器性能预测。
了解基于沥青乳液的冷倒入(CIR)混合物的强度发展需要对感冒混合物的物理化学方面有全面的理解,包括沥青乳液特征及其与聚集物的相互作用。冷水放置的再生(CIR)混合物的固化通常被认为是时间依赖性的,并且由于水的存在而延长。这种时间的演变提出了挑战,尤其是在弥合实验室固化条件和现实世界中场景之间的差异时,这可能会导致规范要求,这些要求并不总是与实际现实相符。这项研究研究了与将热混合沥青(HMA)放在CIR层顶部相关的热和压实的影响。该研究旨在评估CIR层中传热的影响及其随后与覆盖HMA的相互作用。通过传热分析和从现场结构的CIR层提取平板的组合,无论是在放置沥青覆盖层的放置之前和之后,都已经分析了使用伽马式台式台式设备的压实曲线。这种方法使我们能够检查传热及其对固化过程的影响以及冷回收层的整体性能和完整性。这项研究的发现通过研究热,压实和材料特性之间的相互作用,为优化CIR固化过程提供了宝贵的见解。这项研究促进了对CIR应用中传热动态的了解,并为改善建筑实践带来了实际意义。
摘要Al 2 O 3 /Al 6 Ti 2 O 13具有低热膨胀性能的复合陶瓷有望通过定向能量沉积物激光器(DED-LB)技术快速制备大规模和复杂组件。但是,由于对过程条件的理解不足,DED-LB技术的更广泛应用受到限制。Al 2 O 3 /Al 6 Ti 2 O 13(6 mol%TIO 2)复合陶瓷的质量,微观结构和机械性能作为能量输入的函数在广泛的过程窗口中被系统地研究。在此基础上,揭示了固化缺陷和微观结构的演化过程的形成机理,并确定了优化的过程参数。结果表明,高能量输入提高了熔融池的流动性,并促进了组成相的均匀分布和完整的生长,从而促进消除凝固缺陷,例如孔隙和条间隙。此外,微结构的大小在很大程度上取决于能量输入,当能量输入增加时增加。此外,由于固化条件的变化,α -AL 2 O 3相的形态随着能量输入的增加而逐渐从细胞转变为细胞树突。在凝固缺陷和微观结构大小的全面影响下,Al 2 O 3 /Al 6 Ti 2 O 13复合陶瓷的裂缝韧性和弯曲强度随着能量输入的增加而呈现抛物线法行为。在0.36 - 0.54 W ∗ min 2 g - 1 mm -1的能量输入范围内实现最佳的形状质量和出色的机械性能。在此过程窗口中,Al 2 O 3 /Al 6 Ti 2 O的平均微度,断裂韧性和弯曲强度分别高达1640 HV,3.87 MPa M 1/2和227 MPa。这项研究提供了确定熔体生长Al 2 O 3 /Al 6 Ti 2 O 13复合陶瓷的DED-LB的过程参数的实用指导。