数字孪生技术在航空航天、基础设施和汽车等各个工业领域具有广泛的应用前景、现实意义和潜力。然而,由于具体应用不明确,这项技术的采用速度较慢。本文使用离散阻尼动态系统探讨数字孪生的概念。由于数字孪生也有望利用数据和计算方法,因此在这种情况下使用代理模型是有充分理由的。在这种协同作用的推动下,我们探索了在数字孪生技术中使用代理模型的可能性。特别是,我们探索了在数字孪生技术中使用高斯过程 (GP) 模拟器。GP 具有处理噪声和稀疏数据的固有能力,因此,在数字孪生框架内使用它是有充分理由的。涉及刚度变化和质量变化的情况将单独和联合考虑,以及数据中不同程度的噪声和稀疏性。我们的数值模拟结果清楚地表明,GP 模拟器等替代模型有可能成为开发数字孪生的有效工具。分析了与数据质量和采样率相关的方面。总结了本文介绍的关键概念,并提出了未来迫切研究需求的想法。
基因编辑是一种很有前途的新方法,可用于治疗和治愈遗传疾病。特别是,CRISPR(成簇的常规间隔回文重复序列)/Cas 已成为一种令人兴奋的治疗方式,因为它具有专门针对和修改基因组内特定位点的固有能力。用于治疗研究的两种最常见的 Cas 酶是 Cas9 和 Cas12a。Cas12a 与 Cas9 表现出重要差异,这使其成为一种令人兴奋的酶,可进一步表征为基因编辑工具。具体而言,Cas12a 识别不同的原间隔区相邻基序 (PAM),使用较短的向导 RNA (gRNA),并在切割位点产生粘性末端而不是平端。1,2,3,4 此外,与 Cas9 相比,Cas12a 对 R 环内错配的容忍度较低,使其成为一种更特异性的酶。5 虽然已经是一种非常特异性的酶,但最近的研究已经提高了其编辑效率,从而产生了一种称为 AsCas12a Ultra 的工程变体。 6 在这里,我们描述了最近的研究,以描述为什么 AsCas12a Ultra 比 WT AsCas12a 酶更有效,并特别强调了为什么这种新变体具有良好的治疗潜力。
碳捕获是从大气中去除二氧化碳(CO 2)的碳捕获,它引起了人们的注意,以减轻全球变暖的影响。植物和光营养微生物具有通过CO 2固定捕获碳以产生生物量的固有能力。然而,天然碳固定途径受到催化活性低的关键酶的限制,导致低能效率。Rubisco就是一种关键酶,以其表现不佳而臭名昭著。过去的研究未能通过常规方法来增强Rubisco的碳固定。生成建模已成为一种创新的酶工程方法,利用不同的神经网络体系结构来提出具有期望特征的新型变体。在这里,将在Rubisco序列空间训练的变异自动编码器(VAE)应用于Rubisco Engineering的挑战。训练了两种模型,并使用VAE的降低性降低特性,探索了Rubisco的健身景观。序列用催化相关的数据标记,并建立回归模型,目的是预测这些序列具有增强的催化活性。在对低维空间进行系统审查后,生成了新型Rubisco序列。这里使用生成建模提供了Rubisco工程的新观点。
本期 nm 潜艇评论讨论了几个值得潜艇界认真关注的问题。第一个问题由 AFCEA 教育基金会主席、通信、指挥和控制领域最博学的潜艇人员之一、海军少将杰里·霍兰德在头条专题中讨论。这对正在展开的网络中心战辩论非常有价值。可以预期,海军作战将围绕信息处理技术的指数增长而发展,需要新的概念来利用这些能力,然而,许多人并不了解潜艇在未来的潜力。不仅人们对美国潜艇与海上和岸上、本地和远程高层进行联系的能力存在过时的看法,而且很少有海军专业人士认识到需要改变基本的通信模式。也就是说,正如国防知识界可能会说的那样,范式转变会带来力量,也许霍兰德上将已经确定了应该进行这种转变的方向。另一个问题涉及当前造船计划的固有能力。由于该计划包含的潜艇数量很少,建造速度也很低,因此该计划本身对美国未来水下作战能力的重要性比过去几年更高。国会参考服务处的 Ron ff Rourke 先生在他的一份报告中指出
尿苷插入 /缺失(U-Indel)编辑Mito-Condrial mRNA,Protistan类Kine-toplastea独有的,生成规范和潜在的非生产性编辑事件。虽然分子机制和为U-Indel编辑提供所需信息的指南(G)RNA的作用有充分的了解,但对不限制其明显易错的性质的力鲜为人知。对GRNA的分析:mRNA对允许在给定线粒体转录的给定位置解剖编辑事件。一个完整的GRNA数据集,与包括非平均编辑转录物在内的完全表征的mRNA群体配对,将允许在整个小节转录组中全球进行此类分析。为了实现这一目标,我们组装了67个昆虫寄生虫Lep- tomonas pyrrhocoris的微量圆,每个微圆通常编码一个位于两个不同来源的两个相似单元之一中的一个GRNA。在相对较低的注释的grnas中,我们已经解剖了L. pyrrhocoris中的所有识别线粒体编辑事件,其菌株在各个微量圆形类别的丰富度上截然不同。我们的资产支持一个模型,其中许多编辑事件由有限的GRNA驱动,而自发的GRNA具有指导规范和非统计编辑的固有能力。
aire是一种非常规的转录因子,可增强髓质胸腺上皮细胞中数千个基因的表达,并促进自反应性T细胞的克隆缺失或表型转移1-4。AIRE目标特异性的生物学逻辑仍然在很大程度上不清楚,因为与许多转录因子相比,它与特定的DNA序列基序没有结合。在这里,我们实施了两种正交方法来研究AIRE的顺式调节机制:通过分析F1杂交小鼠5,构建卷积神经网络并利用自然遗传变异5。两种方法都提名为Z-DNA和NFE2-MAF,作为对AIRE目标选择的推定积极影响。全基因组映射研究表明,Z-DNA形成和NFE2L2结合图案与基因启动子产生DNA双链断裂的固有能力呈正相关,并且表现出强大的双链破裂产生的启动子可能更有可能与可及的镀铬蛋白和已经具有成熟的Machinery的稳固状态有关。因此,AIRE优先用固定的启动子靶向基因。我们提出了一个模型,其中z-DNA通过增强双链的断裂产生和启动子启动来锚定AIRE介导的转录程序。除了解决长期的机理难题外,这些发现表明了操纵T细胞耐受性的途径。
幽门螺杆菌的惊人特征之一是临床分离株之间广泛的遗传多样性。这种多样性归因于突变率升高,DNA修复受损,DNA转移和频繁重组事件。质粒也已在幽门螺杆菌中鉴定出来,但尚不清楚连接是否可以导致临床分离株之间的DNA转移。检查幽门螺杆菌是否具有共轭质粒转移的固有能力,将穿梭载体引入了幽门螺杆菌中,其中含有含有共轭Incp质粒质粒RP4的原始序列,但没有动员(MOB)基因。表明,这些载体可以稳定复制并在幽门螺杆菌菌株中动员。还证明,幽门螺杆菌染色体上携带的trag和弛豫酶(RLX)同源物对于质粒转移至关重要。引物扩展研究和诱变进一步证实了幽门螺杆菌中的弛豫酶同源物RLX1编码能够在RP4 ORIT上作用的功能酶。此外,这项研究的发现表明,TRAG和RLX1独立于先前描述的IV型分泌系统,包括由CAG致病性岛和梳子转化设备编码的,在介导H. Pylori菌株之间的结合质粒DNA转移中。
新皮层发育取决于神经干细胞和祖细胞增殖和分化以在成年大脑中产生不同种类的神经元的固有能力。这些祖细胞可以区分为顶端祖细胞,这些祖细胞在心室区和基础祖细胞中占据干细胞生态位,这些祖细胞占据了室室(SVZ)中的干细胞生态位。在发育过程中,室室中提供的干细胞生态位使基底祖细胞的增殖和自我更新增加,这可能是人类新皮层扩张的基础。然而,在发育中的新皮层中形成SVZ干细胞生态位的成分尚未完全了解。在这篇综述中,我们将讨论SVZ干细胞生态位的潜在组成部分,即细胞外基质组成和脑脉管系统,以及它们在胎儿新皮质发育过程中建立和维持这种利基市场中可能的关键作用。我们还将强调基底祖细胞形态在保持SVZ干细胞壁中的增殖能力方面的潜在作用。最后,我们将专注于使用脑器官对i)了解基底祖细胞的独特特征,尤其是基础radial胶质的; ii)SVZ干细胞生态位的研究成分; iii)提供了有关如何改善脑器官(尤其是器官SVZ)的未来方向,并使其更可靠的人类新皮层发育和进化研究模型。
基于高斯过程 (GP) 的替代模型具有固有能力,可以捕捉数字孪生框架 Kobayashi 等人 [2022a,b]、Rahman 等人 [2022]、Khan 等人 [2022] 的建模和仿真组件中存在的由于数据有限、数据缺失、数据缺失和数据不一致(噪声/错误数据)而引起的异常,特别是对于事故容错燃料 (ATF) 概念。但是,当我们拥有有限的高保真度(实验)数据时,GP 不会非常准确。此外,使用 GP 应用高维函数(>20 维函数)来近似预测具有挑战性。此外,噪声数据或包含错误观测值和异常值的数据是高级 ATF 概念面临的主要挑战。此外,控制微分方程对于长期 ATF 候选者来说是经验性的,数据可用性是一个问题。基于物理的多保真度克里金法 (MFK) 可用于识别和预测所需的材料特性。MFK 特别适用于低保真度物理(近似物理)和有限的高保真度数据 - 这是 ATF 候选者的情况,因为数据可用性有限。本章探讨了该方法,并介绍了其在 ATF 实验热导率测量数据中的应用。MFK 方法对少量无法通过传统克里金法建模的数据显示出其重要性。用这种方法构建的数学模型可以轻松连接到后期分析,例如不确定性量化和敏感性分析,并有望应用于基础研究和广泛的产品开发领域。本章的总体目标是展示可以嵌入 ATF 数字孪生系统的 MFK 替代品的能力。
核酸疗法具有沉默,表达或编辑基因的巨大潜力。然而,基于核酸的药物需要化学修饰和复杂的纳米技术,以防止其降解,减少免疫刺激作用并确保细胞内递送。脂质纳米颗粒(LNP)技术是当前的黄金标准输送平台技术,它已使第一种siRNA药物Onpattro和COVID-19-19-MRNA疫苗的临床翻译能够进行临床翻译。尽管如此,目前批准的LNP系统主要适合静脉内治疗后地方给药或肝脏输送后的疫苗目的。在这里,我引入了一个基于天然脂蛋白的纳米传递平台,该平台防止了小型干扰RNA(siRNA)的过早降解,以确保其靶向和细胞内递送到造血茎和祖细胞和祖细胞(HSPC)中。建立了稳定地融入其核心的原型载脂蛋白脂质纳米颗粒(ANP)后,我们构建了一个全面的库,我们彻底地表征了单个ANP的物理化学特性。在对所有制剂进行体外筛选后,我们选择了八个代表图书馆多样性的siRNA-ANP,并确定了它们使用乱伦施用方案在小鼠中的免疫细胞亚群中沉默溶酶体相关的膜蛋白1(LAMP1)的能力。我们的数据表明,使用不同的ANP,我们可以在免疫细胞亚群及其骨髓祖细胞中实现功能基因沉默。除了基因沉默之外,ANP平台接合免疫细胞的固有能力为其提供了巨大的潜力,可以将其他类型的核酸疗法传递给HSPC。