脑瘤是世界上最致命的疾病之一。这种疾病可以攻击任何人,无论性别或特定年龄段。脑瘤的诊断是通过手动识别计算机断层扫描或磁共振成像的图像进行的,因此可能会发生诊断错误。此外,可以使用活检技术进行诊断。这种技术非常准确,但需要很长时间,大约 10 到 15 天,并且需要大量设备和医务人员。基于此,需要能够根据 MRI 生成的图像进行分类的机器学习技术。这项研究旨在提高以前研究对脑瘤分类的准确性,从而避免在脑瘤诊断中出现错误。本研究使用的方法是使用 AlexNet 和 Google Net 架构的卷积神经网络。这项研究的结果显示,AlexNet 架构的准确率为 98%,GoogleNet 的准确率为 96%。与以前的研究相比,这个结果更高。这一发现可以减少模型训练期间的计算负担。该研究成果可以帮助医生快速准确地诊断脑肿瘤。
摘要 - 图像分类是针对各个部门的深度学习领域(DL)领域的重要应用之一。可用于执行图像分类的不同类型的神经网络体系结构,每种神经网络体系结构都会产生不同的精度。数据集和所使用的功能是影响模型的结果。研究界至少针对特定领域的广义模型致力于广义模型。使用知识信息管理方法确定了对各种深度学习模型的当代调查,以进一步提供最佳的体系结构以及对广义深度学习模型,以将图像缩小到特定于部门的特定于部门。该研究系统地介绍了用于每个深度学习模型的不同类型的体系结构,其变体,层和参数。详细介绍了体系结构类型的特定应用程序和局限性。它可以帮助研究人员为特定部门选择适当的深度学习体系结构。关键字 - 图像分类,深度学习,神经网络
遥感是通过技术设备获取有关所需位置的信息的过程,我们将我们从一定距离放置在选定位置,并在空间,光谱,辐射测量和时间分辨率中分析,显示和监视它,并通过任何距离进行测量,而无需进行任何距离[1]。遥感用于制图,水文学,地质,林业,农业,国防,安全和空间的领域。有具有数据集的平台,例如前哨,Landsat,Maxar,Planet,UC Merced,EuroSat,patternnet,Spacenet和Google Earth Engine。在图像处理和数据挖掘技术中进行了改进,以解决提供大数据和分析数据[2]的问题,而SATLASPRETRAIN [3]数据集是已使用的大数据集之一。
摘要 — 图像分类在遥感中起着重要作用。地球观测 (EO) 不可避免地进入了大数据时代,但对计算能力的高要求已经成为使用复杂机器学习模型分析大量遥感数据的瓶颈。利用量子计算可能有助于解决这一挑战,因为它可以利用量子特性。本文介绍了一种混合量子-经典卷积神经网络 (QC-CNN),它应用量子计算有效地从 EO 数据中提取高级关键特征以进行分类。此外,采用振幅编码技术减少了所需的量子位资源。复杂度分析表明,与经典模型相比,所提出的模型可以加速卷积运算。通过 TensorFlow Quantum 平台,使用不同的 EO 基准(包括 Overhead-MNIST、So2Sat LCZ42、PatternNet、RSI-CB256 和 NaSC-TG2)对模型性能进行评估,结果表明,该模型能够取得比经典模型更优的性能,且具有更高的泛化能力,验证了 QC-CNN 模型在 EO 数据分类任务上的有效性。
在我们这个不断发展的世界里,海量的数据无时无刻不在涌入——无论是每天、每小时,甚至是每分每秒。我们交流、分享链接、图像和观点,留下一串串的痕迹,不仅代表着我们广阔的自然环境,也反映了我们的想法、喜好和情绪。认识到这些数据的重要性,数据科学领域应运而生,致力于揭示其中隐藏的洞见。机器学习 (ML) 已成为一个令人着迷的研究领域[8],因其从大量数据集中提取知识的能力而备受瞩目[20]。机器学习在弥合我们对自然的理解与其复杂性之间的差距方面发挥了关键作用。深度学习 (DL),尤其是神经网络 (NN),彻底改变了经典的机器学习,成为建模统计数据的非线性结构[23]。 NN,尤其是卷积神经网络 (CNN),可以模拟输入和输出之间的复杂关系[8],在图像模式识别等任务上表现出色,而这些任务的灵感来自视觉皮层的结构。虽然 NN,尤其是多层 NN,已经展现出非凡的能力,但它们的可训练性却带来了挑战。反向传播的出现缓解了这个问题,但训练困难仍然存在,需要整流神经元激活函数和分层训练等解决方案。量子机器学习 (QML) 开辟了新途径,利用嘈杂的中型量子计算机来解决涉及量子数据的计算问题。变分量子算法 (VQA) 和量子神经网络 (QNN) 提供了有前景的应用,利用经典优化器来训练量子电路中的参数。QNN 通过分析具有多项式复杂度的系统[2][6](在经典机器学习中,该系统的复杂度将呈指数级增长),与经典模型相比具有独特的优势,从而提供了计算优势。值得注意的是,与传统神经网络相比,QNN 表现出更快的学习能力,这归因于第 1 章和 A 章中讨论的纠缠。先前的研究强调了 QNN 在从有限数据中学习方面的有效性,从而减少了训练过程中的时间和精力。这篇硕士论文深入研究了使用用最少图像训练的各种量子模型进行有效图像分类的可能性,最后直接与经典 CNN 性能进行了比较。使用两个不同的数据集进行训练,随后缩小规模以探索 QNN 模型比 CNN 预测更多图像的潜力。
“使用人工智能和机器学习对遗产图像进行分类”项目的目标是创建一种自动分类旧图像的方法。目标是使用机器学习和人工智能根据照片的历史和文化相关性对其进行准确分析。通过自动化图像分类过程,该计划旨在加快历史照片的保存和可访问性。使用深度学习技术,将研究照片的特征,以便将它们分类为相关类别,例如建筑、文物、绘画、雕塑或历史古迹。由此产生的自动分类系统将通过实现高效的检索和查询,帮助保存和推广我们的文化历史。该项目的目标是通过整合尖端技术彻底改变环境的管理和保护。关键词:遗产图像、自动分类、人工智能、机器学习、深度学习算法、图像特征、分类、建筑、文物、绘画、雕塑、历史地标、可搜索数据库、保存、可访问性、文化遗产、保护、文化文物和历史。
摘要:KITSUNE 卫星是一个由 6 个单元组成的立方体卫星平台,主要任务是在低地球轨道 (LEO) 上进行 5 米级地球观测,有效载荷采用 31.4 MP 商用现成传感器、定制光学器件和相机控制板开发。尽管有效载荷是为地球观测而设计的,并以捕捉地面上的人造图案为主要任务,但计划通过卷积神经网络 (CNN) 方法对野火图像进行分类作为次要任务。因此,KITSUNE 将成为第一颗使用 CNN 对 LEO 野火图像进行分类的立方体卫星。在本研究中,卫星上采用了深度学习方法,通过预处理而不是在地面站执行图像处理的传统方法,以减少下行链路数据。 Colab 中生成的预训练 CNN 模型保存在 RPi CM3+ 中,其中,上行链路命令将执行图像分类算法并将结果附加到捕获的图像数据上。地面测试表明,在使用 MiniVGGNet 网络对卫星系统上运行的野火事件进行分类时,它可以实现 98% 的总体准确率和 97% 的 F1 得分成功率。同时,还比较了 LeNet 和 ShallowNet 模型,并在 CubeSat 上实施,F1 得分分别为 95% 和 92%。总体而言,这项研究展示了小型卫星在轨道上执行 CNN 的能力。最后,KITSUNE 卫星将于 2022 年 3 月从国际空间站部署。
摘要 — 目前常用的图像识别卷积神经网络与人脑有一些相似之处。然而,它们之间存在许多差异,而且成熟的反向传播学习算法在生物学上并不合理。Hebbian 学习是一种可以最小化这些差异并可能为图像识别网络提供类似大脑的有利特征的算法。在这里,我们探讨了 Hebbian 学习和反向传播之间的差异,包括准确性和隐藏层数据表示。总体而言,Hebbian 网络的表现比传统的反向传播训练网络差得多。使用不完整的训练数据和失真的测试数据的实验导致性能差异较小但仍然可见。然而,事实证明,Hebbian 网络的卷积滤波器结构比反向传播更简单、更易于解释。我们假设,改进 Hebbian 网络的扩展能力可以使它们成为具有更像大脑行为的图像分类网络的强大替代方案。
项目:项目 / cifar10#i t取决于数据集种子:9999#i t的变化,用于标准化的运行#均值和标准偏差的变化取决于数据集的不同。 :[0.24697121432552785,0.2433893940435022,0.2615925905215076]早期_Stopping_patience:10 num_epochs:10 num_epochs:100适应#使用L r:5E -4#优化参数EPS:1E − 16#优化器参数验证_Metric:F1#f1 -score i用作v a l i i d a t i o n t i o n t i o pretration:true#foricednet -foricednet -fifficitynet -forificitynet the t i f1 _ r a t i o:0.8 v a l i d _ r a t i o:无#自动获得t e s t e s t _ r a t i o:无#自动获得Ensemble_module_list:#在集合中包含l o c a l o c a l o c a l地址
a 计算机科学学院,加拿大国际学院 (CIC),新开罗,埃及 b 计算机科学系,特洛伊大学科学技术学院,美国 摘要 多类图像分类被认为是计算机视觉中的一项具有挑战性的任务,需要将图像正确地分类到多个不同组之一。近年来,量子机器学习已成为研究人员关注的话题。利用叠加和纠缠等量子概念,量子机器学习算法提供了一种更有效的方法来处理和分类高维图像数据。本文提出了一种使用量子启发式卷积神经网络架构(简称 QCNN)的新图像分类模型。所提出的模型包括两个主要阶段;基于 QCNN 阶段的预处理和分类。采用具有不同特征的七个基准数据集来评估所提出模型的性能。实验结果表明,所提出的 QCNN 优于其经典版本。此外,与最先进的模型相比,结果证明了所提出的模型的有效性。 关键词 1 量子计算、卷积神经网络、图像分类、量子机器学习