摘要 — 由于其事件驱动的特性,脉冲神经网络 (SNN) 被认为是计算效率高的模型。脉冲神经元编码有用的时间事实并具有高抗噪性。然而,时空复杂性的高质量编码及其对 SNN 的训练优化受到当前问题的限制,本文提出了一种新颖的分层事件驱动视觉设备,以探索信息如何通过生物可控机制在视网膜中传输和表示。该认知模型是一个增强脉冲的框架,包括 CNN 的功能学习能力和 SNN 的认知能力。此外,该视觉设备以生物现实主义的方式建模,具有无监督学习规则和高级脉冲发放率编码方法。我们在一些图像数据集(MNIST、CIFAR10 及其嘈杂版本)上对它们进行训练和测试,以表明我们的模型可以处理比现有认知模型更有价值的数据。本文还提出了一种新颖的量化方法,使所提出的基于脉冲的模型更适合神经形态硬件实现。结果表明,这种联合 CNN-SNN 模型可以获得更高的聚焦精度并获得更有效的泛化能力。
摘要。目的:本研究的创新之处在于探索了多种脑电波信号数据预处理的新方法,其中提取统计特征,然后根据降维算法选择它们的顺序将其格式化为视觉图像。然后,这些数据被处理为 2D 和 3D CNN 的视觉输入,然后进一步提取“特征的特征”。方法:从三个脑电图数据集得出的统计特征在视觉空间中呈现,并分别在 2D 和 3D 空间中处理为像素和体素。对三个数据集进行了基准测试,即来自四个 TP9、AF7、AF8 和 TP10 10-20 电极的心理注意力状态和情绪价以及来自 64 个电极的眼睛状态数据。通过三种选择方法选择了 729 个特征,以便从相同的数据集中形成 27x27 图像和 9x9x9 立方体。为 2D 和 3D 预处理表示而设计的 CNN 学习从数据中卷积有用的图形特征。主要结果:70/30 分割方法表明,在 2D 中,特征选择分类准确度最高的方法是注意力状态的单一规则和情绪状态的相对熵。在眼部状态数据集中,3D 空间最佳,由对称不确定性选择。最后,使用 10 倍交叉验证来训练最佳拓扑。最终最佳 10 倍结果是注意力状态(2D CNN)97.03%,情绪状态(3D CNN)98.4%,眼部状态(3D CNN)97.96%。意义:本研究提出的框架的结果表明,CNN 可以成功地从一组预先计算的原始 EEG 波的统计时间特征中卷积出有用的特征。 K 折验证算法的高性能表明,除了预先计算的特征之外,CNN 学习到的特征还包含对分类有用的知识。
摘要:在各种肿瘤类型中,大肠癌和脑肿瘤仍然被认为是世界上最严重和致命的疾病之一。因此,许多研究人员致力于提高诊断医学机器学习模型的准确性和可靠性。在计算机辅助诊断中,在处理具有不足数据注释的数据集时,自我监督学习已被证明是一个有效的解决方案。但是,医疗图像数据集经常患有数据违规性,使识别任务更具挑战性。班级分解方法通过简化数据集的类边界的学习,为这个具有挑战性的问题提供了强大的解决方案。在本文中,我们提出了一个称为XdeCompo的强大自我监督模型,以提高功能从借口任务到下游任务的可传递性。XdeCompo是基于基于基于繁殖的类别分解而设计的,以有效鼓励在下游任务中学习阶级边界。XdeCompo具有可解释的组成部分,可以突出重要的像素,这些像素有助于分类,并解释了类分解对改善提取特征专业的影响。我们还探讨了XdeCompo在处理不同医学数据集的典型性,例如用于大肠癌和脑肿瘤图像的组织病理学。定量结果表明,CRC和脑肿瘤图像的高精度分别为96.16%和94.30%的XdeCompo的鲁棒性。XdeCompo与其他模型相比,在不同的医学图像数据集中证明了其概括能力,并在不同的医学图像数据集中实现了高分类精度(无论是定量还是质量上)。已使用后可解释的方法来验证特征可传递性,并证明了高度准确的特征表示。
“自 50 年前首次报道以来,Johnsen 评分已广泛应用于泌尿科。然而,睾丸的组织病理学评估并非易事,需要花费大量时间,因为睾丸组织非常复杂,精子发生过程中涉及多个高度专业化的步骤。我们的目标是利用人工智能技术简化这一耗时的诊断步骤。为此,我们选择了 Google 的自动机器学习 (AutoML) Vision,它不需要编程,可以为单个患者数据集创建人工智能模型。借助 AutoML Vision,没有编程技能的临床医生可以使用深度学习构建自己的模型,而无需数据科学家的帮助,”东邦大学医学院泌尿外科副教授 Hideyuki Kobayashi 博士说道(图 1)。
摘要 — 目前常用的图像识别卷积神经网络与人脑有一些相似之处。然而,它们之间存在许多差异,而且成熟的反向传播学习算法在生物学上并不合理。Hebbian 学习是一种可以最小化这些差异并可能为图像识别网络提供类似大脑的有利特征的算法。在这里,我们探讨了 Hebbian 学习和反向传播之间的差异,包括准确性和隐藏层数据表示。总体而言,Hebbian 网络的表现比传统的反向传播训练网络差得多。使用不完整的训练数据和失真的测试数据的实验导致性能差异较小但仍然可见。然而,事实证明,Hebbian 网络的卷积滤波器结构比反向传播更简单、更易于解释。我们假设,改进 Hebbian 网络的扩展能力可以使它们成为具有更像大脑行为的图像分类网络的强大替代方案。
例如在人脸上训练的模型,以分类对象是否戴着眼镜,可以在猫的图像上产生相同的输出。我们希望调查结果是一组人的面孔,而不是猫的脸。
摘要:乳腺癌是全球第二常见的癌症,主要影响女性,而组织病理学图像分析是用于确定肿瘤恶性肿瘤的可能方法之一。关于图像分析,近年来,深度学习的应用变得越来越普遍。但是,一个重要的问题是可用数据集的不平衡性质,有些类的图像比其他类别的图像更多,这可能会由于较差的概括性而影响模型的性能。避免此问题的可能策略是用最多的图像来缩小课程来创建平衡数据集。尽管如此,小型数据集不建议使用这种方法,因为它可能导致模型性能差。取而代之的是,传统上使用了诸如数据预言之类的技术来解决此问题。这些技术应用了简单的转换,例如翻译或旋转到图像,以增加数据集中的可变性。另一种可能性是使用生成对抗网络(GAN),该网络可以从相对较小的训练集中生成图像。这项工作旨在通过使用GAN而不是传统技术应用数据扩展来提高模型性能在组织病理学图像中进行分类。
基于运动图像(MI)的大脑计算机界面(BCI)应用旨在分析大脑如何与脑电图(EEG)信号与外部环境相互作用。尽管当前的模型取得了令人鼓舞的结果,但从EEG信号中开发了MI的准确分类仍然是一个重大挑战。在本文中,我们设计了一个名为(ORDWT_AR)的MI分类模型,该模型利用过度完整的理性扩张小波变换(ORDWT)以及自动回归(AR)模型。首先,使用滑动窗口方法将脑电图分割为间隔。然后,每个脑电图通过ORDWT传递以分析EEG信号。因此,从每个段获得了一系列停止频段。然后,将AR与ORDWT集成,以从每个EEG间隔中提取代表性特征。选定的功能被发送到多种分类模型中,包括加权K-Nearest邻居(WKNN),决策树(DTREE)和Boosted树(BST)。使用四个基准EEG数据库评估所提出的模型,其中三个是从脑部计算机界面(BCI)竞争III中收集的,一个是从CHB-MIT中收集的。结果表明,提出的模型ORDWT_AR与WKNN分类器相结合的三个BCI竞赛III数据集的平均分类精度为99.8%,CHB-MIT数据集的平均分类精度为99.7%。获得的结果表明,所提出的方案是对脑电图信号进行分类并具有出色结果的有前途的工具。提议的模型可以支持专家帮助残疾人与环境互动并提高生活质量。
摘要:阿尔茨海默病是全球痴呆症的主要病因,影响着数百万人,他们的日常活动、交流甚至人脸识别能力逐渐受损。虽然狼疮的病因尚不完全清楚,但它可能反映了生活方式的选择和环境因素以及遗传倾向。诊断这些疾病的最大障碍是它们通常早期表现不明显,而且缺乏灵敏的检测范例。深度学习算法在几年前首次出现在医学成像的前沿,并被誉为复杂的诊断辅助工具,能够在扫描中发现通常隐藏在人眼中的细微迹象。我们受益于使用这些最先进的算法来改善阿尔茨海默病的检测,其中当今最大的 MRI 数据集之一(超过 86,000 张图像)被用于训练我们的模型。鉴于这个庞大的数据集,它被明显地结合成一个以准确为中心的诊断工具。我们的新型深度学习模型性能强大,并提供了最先进的验证准确率(99.63%),超越了现有模型。这些数据凸显了我们的模型作为检测早期阿尔茨海默病的可验证方法的巨大前景——阿尔茨海默病是控制和管理疾病进展的一个重要问题。通过采用尖端的深度学习技术,我们的研究确实是阿尔茨海默病诊断领域的一大进步。早期诊断可以更好地治疗并减轻疾病负担,从而可以预防发病率、死亡率,甚至改变许多患者的治疗结果。这是在人工智能的帮助下诊断阿尔茨海默病的一大进步,并有望更准确、更及时地发现。