“使用人工智能和机器学习对遗产图像进行分类”项目的目标是创建一种自动分类旧图像的方法。目标是使用机器学习和人工智能根据照片的历史和文化相关性对其进行准确分析。通过自动化图像分类过程,该计划旨在加快历史照片的保存和可访问性。使用深度学习技术,将研究照片的特征,以便将它们分类为相关类别,例如建筑、文物、绘画、雕塑或历史古迹。由此产生的自动分类系统将通过实现高效的检索和查询,帮助保存和推广我们的文化历史。该项目的目标是通过整合尖端技术彻底改变环境的管理和保护。关键词:遗产图像、自动分类、人工智能、机器学习、深度学习算法、图像特征、分类、建筑、文物、绘画、雕塑、历史地标、可搜索数据库、保存、可访问性、文化遗产、保护、文化文物和历史。
背景。脑机界面(BMI)是一种接收大脑信号的设备或实验设置,对其进行分类,然后将其用作计算机命令。对哪种学习方法(深度学习,卷积网络,AI等)尚无共识和/或每种方法中的算法类型最好运行BMI。目标。这项工作的目的是建立一个低成本,便携式,易于使用和可靠的电动图像电脑图(EEG-MI)的BMI;比较不同的算法,以找到最适合这种情况的算法。方法。在这项研究中,从Physionet公共数据和使用Emotiv头戴式耳机获得的Motor Imager(MI)EEG信号都与四种机器学习算法进行了分类。这些算法是:结合线性判别分析(LDA),深神经网络(DNN),卷积神经网络(CNN)和最终riemannian最小值(RMDM)的常见空间模式(CSP)。结果。每种方法的平均准确性分别为78%,66%,60%和80%。获得了基线与运动图像(MI)比较的最佳结果。随着全球培训公共数据的,获得了86.4%至99.9%的精度。 使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。 对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。 在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。随着全球培训公共数据的,获得了86.4%至99.9%的精度。使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。 对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。 在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。结论。CSP和RMDM算法产生了快速(计算时间)和有效的(成功率)工具,以实现为BMI中的深度学习算法。
摘要 —脑机接口利用脑信号来控制外部设备,而无需实际控制行为。最近,语音意象已被研究用于使用语言进行直接交流。语音意象使用用户想象语音时产生的脑信号。与运动意象不同,语音意象仍然具有未知的特征。此外,脑电图具有复杂和非平稳特性,导致解码性能不足。此外,语音意象难以利用空间特征。在本研究中,我们设计了长度训练,使模型能够对一系列少量单词进行分类。此外,我们提出了分层卷积神经网络结构和损失函数以最大化训练策略。所提出的方法在语音意象分类中表现出竞争力。因此,我们证明了单词的长度是提高分类性能的线索。关键词-脑机接口;脑电图;语音意象;卷积神经网络
摘要:图表图像分类是自动化数据提取和从可视化的解释的关键任务,这些任务被广泛用于业务,研究和教育等领域。在本文中,我们评估了卷积神经网络(CNN)和视觉模型(VLM)的性能,鉴于它们在各种图像分类和理解任务中的使用越来越多。,我们构建了25种图表类型的不同数据集,每个数据集包含1,000张图像,并培训了多个CNN体系结构,同时还评估了预训练的VLM的零拍概括能力。我们的结果表明,在经过专门用于图表分类的培训时,CNN胜过VLM,尽管如此,它仍显示出有希望的潜力,而无需特定于任务的培训。这些发现强调了CNN在图表分类中的重要性,同时突出了VLM的进一步微调的未开发潜力,这对于推进自动数据可视化分析至关重要。
近年来,随着当前分类系统在数字内容识别中的快速发展,图像的自动分类已成为计算机视觉领域中最具挑战性的任务。可以看出,与人类的愿景相比,系统对于系统自动理解和分析图像的视力非常具有挑战性。已经完成了一些研究论文来解决低级当前分类系统中的问题,但输出仅限于基本图像特征。类似地,这些方法无法准确对图像进行分类。对于此领域的预期结果,例如计算机视觉,本研究提出了一种使用深度学习算法的深度学习方法。在这项研究中,一个基于卷积神经网络(CNN)的建议模型,该模型是一种机器学习工具,可用于图像的自动分类。该模型与图像的分类有关,为此,它采用Corel Image Dataset(Corel Gallery Image DataSet)作为参考。用于培训的数据集中的图像要比图像的分类更难,因为它们需要更多的计算资源。在实验部件中,使用CNN网络训练图像的精度为98.52%,证明该模型在图像的分类中具有很高的精度。
1纳瓦拉公立大学统计,计算机科学与数学系,帕姆普罗纳公立大学,西班牙2机器学习小组,计算机科学学院,柏林技术研究所,柏林柏林,德国3研究所3研究所,医学心理学和行为神经生物学研究所(IMP) (BRTA), Donostia-San Sebasti ´ an, Spain 5 BIFOLD Berlin Institute for the Foundations of Learning and Data, Berlin, Germany 6 Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany 7 Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea 8 Max Planck Institute for Informatics, Saarbrücken, Germany 9 Department of Neurology, Max Planck Institute对于人类认知和脑科学,德国莱比锡10认知与决策中心,认知神经科学研究所,国家研究大学高等教育学院,俄罗斯莫斯科,俄罗斯11作者都做出了同样的贡献。*作者应与之解决任何信件。
文本对图像(T2I)生成模型最近成为一种强大的工具,可以创建照片现实的图像并引起多种应用。然而,将T2i模型的有效整合到基本图像分类任务中仍然是一个悬而未决的问题。促进图像锁骨表现的一种普遍的策略是通过使用T2I模型生成的合成图像来增强训练集。在这项研究中,我们仔细检查了当前发电和常规数据增强技术的缺点。我们的分析表明,这些方法努力产生既忠实的(就前景对象)而且针对领域概念的多样化(在背景上下文中)。为了应对这一挑战,我们引入了一种创新的类数据增强方法,称为diff-mix 1,该方法通过在类之间执行图像翻译来丰富数据集。我们的经验结果是,DIFF-MIX在信仰和多样性之间取得了更好的平衡,从而导致各种图像分类场景之间的性能显着提高,包括域名数据集的少量,常规和长尾分类。
摘要 本文致力于开发一种对脑肿瘤(包括胶质瘤、脑膜瘤、垂体瘤和非肿瘤)的 MRI 图像进行分类的模型。数据集是从 Kaggle 收集的。然后,它被组织起来并上传到 GitHub。这项工作利用了 Python 的不同库,即 Matplotlib、NumPy 和 Sci-Kit Learn。Google Collaboratory 已用于执行环境,存储要求有限,为 108 GB。图像从名为“Brain-Tumor”的 GitHub 存储库克隆到 Google Collaboratory。该存储库包含一个对应于所有指定类型肿瘤图像的数据集。支持向量机算法已用于分类。所提出模型的准确率在 84% 到 92% 之间。关键词:Google Collab、图像分类、MRI 图像、机器学习、存储库、支持向量机 (SVM)
摘要 阿尔茨海默病 (AD) 是最常见的痴呆症类型。在发达国家,65 岁以后的 AD 发病率估计约为 5%,85 岁以上的发病率高达 30%。AD 会破坏脑细胞,导致人们失去记忆力、心理功能和继续日常活动的能力。这项研究的结果可能会帮助专家通过患者的磁共振成像 (MRI) 区分 AD 患者和正常对照 (NC) 来做出决策。性能进化被应用于来自阿尔茨海默病神经成像计划 (ADNI) 收集的 346 张磁共振图像。深度信念网络 (DBN) 分类器用于实现分类功能。权重用于测试所提出方法的识别能力,并使用样本训练集对网络进行训练。因此,这项研究提供了一种利用自动分类识别阿尔茨海默病的新方法。在测试中,它的表现令人钦佩,当将灰度共生矩阵 (GLCM) 特征与 DBN 相结合时,对 AD 和 NC 研究类别的准确率达到 98.46%。关键词:阿尔茨海默病、深度信念网络、灰度共生矩阵、磁共振成像。
深度学习方法已显示出在医学图像分析 [1] 中的高性能潜力,尤其是计算机辅助诊断的分类。然而,解释它们的决策并非易事,这可能有助于获得更好的结果并了解它们的可信度。已经开发了许多方法来解释分类器的决策 [2]–[7],但它们的输出并不总是有意义的,而且仍然难以解释。在本文中,我们将 [8] 的方法改编为 3D 医学图像,以找出网络对定量数据进行分类的基础。事实上,定量数据可以从不同的医学成像模式中获得,例如用正电子发射断层扫描 (PET) 获得的结合电位图或从结构磁共振成像 (MRI) 中提取的灰质 (GM) 概率图。我们的应用重点是检测阿尔茨海默病 (AD),这是一种诱导 GM 萎缩的神经退行性综合征。我们使用从 T1 加权 (T1w) MRI 中提取的 GM 概率图(萎缩的代理)作为输入。该过程包括两个不同的部分:首先训练卷积神经网络 (CNN) 以将 AD 与对照对象进行分类,然后固定网络的权重并训练掩码以防止网络正确分类训练后已正确分类的所有对象。这项工作的目标是评估最初为自然图像开发的可视化方法是否适用于 3D 医学图像,并利用它来更好地理解分类网络所做的决策。这项工作是原创作品,尚未在其他地方提交。