摘要:本文使用脑电图数据引入一种方法,用于在运动图像(MI)任务中对右手和左手类别进行分类。内核跨光谱功能连接网络(KCS-FCNET)方法通过提供更丰富的空间 - 频谱特征图,更简单的体系结构和更容易解释的EEG驱动的MI歧视方法来解决这些局限性。尤其是,KCS-FCNET使用基于1D横向的单个神经网络从RAW EEG数据中提取时间频率特征和跨光谱高斯内核连接层来模型通道功能关系。因此,功能连接功能映射减少了参数的数量,从而通过提取与MI任务相关的有意义的模式来改善可解释性。这些模式可以适应主题的独特特征。验证结果证明,引入KCS-FCNET浅架构是一种基于脑电图的MI分类的有前途的方法,具有在脑computer接口系统中实现现实世界使用的潜力。
本研究讨论了一种使用卷积神经网络 (BTMIC-CNN) 的全自动脑肿瘤 MRI 医学图像分类模型。所提出的神经模型采用设计科学研究方法 (DSRM) 对来自两个数据集的 MRI 医学图像进行分类。一个用于二元分类任务(包含肿瘤和非肿瘤图像)。第二个用于多类分类任务(包含三种类型的脑肿瘤 MRI 医学图像,即:神经胶质瘤、脑膜瘤和垂体)。该模型的优异性能通过评估指标得到确认,总体准确率为 99%。它在分类准确度方面优于现有方法,有望帮助放射科医生和医生准确对脑肿瘤图像进行分类。这项研究有助于实现可持续发展目标 (SDG) 的第三个目标,即良好的健康和福祉。
摘要 — 由于其事件驱动的特性,脉冲神经网络 (SNN) 被认为是计算效率高的模型。脉冲神经元编码有用的时间事实并具有高抗噪性。然而,时空复杂性的高质量编码及其对 SNN 的训练优化受到当前问题的限制,本文提出了一种新颖的分层事件驱动视觉设备,以探索信息如何通过生物可控机制在视网膜中传输和表示。该认知模型是一个增强脉冲的框架,包括 CNN 的功能学习能力和 SNN 的认知能力。此外,该视觉设备以生物现实主义的方式建模,具有无监督学习规则和高级脉冲发放率编码方法。我们在一些图像数据集(MNIST、CIFAR10 及其嘈杂版本)上对它们进行训练和测试,以表明我们的模型可以处理比现有认知模型更有价值的数据。本文还提出了一种新颖的量化方法,使所提出的基于脉冲的模型更适合神经形态硬件实现。结果表明,这种联合 CNN-SNN 模型可以获得更高的聚焦精度并获得更有效的泛化能力。
摘要:在各种肿瘤类型中,大肠癌和脑肿瘤仍然被认为是世界上最严重和致命的疾病之一。因此,许多研究人员致力于提高诊断医学机器学习模型的准确性和可靠性。在计算机辅助诊断中,在处理具有不足数据注释的数据集时,自我监督学习已被证明是一个有效的解决方案。但是,医疗图像数据集经常患有数据违规性,使识别任务更具挑战性。班级分解方法通过简化数据集的类边界的学习,为这个具有挑战性的问题提供了强大的解决方案。在本文中,我们提出了一个称为XdeCompo的强大自我监督模型,以提高功能从借口任务到下游任务的可传递性。XdeCompo是基于基于基于繁殖的类别分解而设计的,以有效鼓励在下游任务中学习阶级边界。XdeCompo具有可解释的组成部分,可以突出重要的像素,这些像素有助于分类,并解释了类分解对改善提取特征专业的影响。我们还探讨了XdeCompo在处理不同医学数据集的典型性,例如用于大肠癌和脑肿瘤图像的组织病理学。定量结果表明,CRC和脑肿瘤图像的高精度分别为96.16%和94.30%的XdeCompo的鲁棒性。XdeCompo与其他模型相比,在不同的医学图像数据集中证明了其概括能力,并在不同的医学图像数据集中实现了高分类精度(无论是定量还是质量上)。已使用后可解释的方法来验证特征可传递性,并证明了高度准确的特征表示。
这项研究的目的是分析电极之间的相互作用的贡献,即以相关性或jaccard距离测量,对运动成像范式中两种作用的分类,即左手运动和右手运动。分析是在两个分类模型中进行的,即静态(线性判别分析,LDA)模型和动态(隐藏的条件随机范围,HCRF)模型。还分析了在静态和动态模型中使用滑动窗口技术(SWT)的影响。The study proved that their combination with temporal features provides significant information to improve the classification in a two-class motor imagery task for LDA (average accuracy: 0.7192 no additional features, 0.7617 by adding correlation, 0.7606 by adding Jaccard distance; p < 0.001) and HCRF (average accuracy: 0.7370 no additional features, 0.7764 by adding相关性,通过添加Jaccard距离为0.7793;另外,我们表明,在相互作用度量或分类器本身的性质上,电极之间的相互作用显着提高了每个分类器的性能。
摘要:由于人脑的敏感性,从图像中正确分割脑肿瘤对于患者和医务人员都非常重要。手术干预需要医生非常谨慎和精确地瞄准大脑所需的部位。此外,分割过程对于多类肿瘤分类也很重要。这项工作主要集中在脑磁共振图像处理的三个主要领域进行分类和分割,即:脑磁共振图像分类、肿瘤区域分割和肿瘤分类。提出了一个名为DeepTumor的框架,用于将多阶段多类胶质瘤肿瘤分类为四类;水肿、坏死、增强和非增强。对于脑磁共振图像二元分类(肿瘤和非肿瘤),提出了两个深度卷积神经网络 (CNN) 模型用于脑磁共振图像分类; 9层模型,共有217,954个可训练参数,以及一个改进的10层模型,共有80,243个可训练参数。在第二阶段,提出了一种基于增强模糊C均值(FCM)的技术用于脑MRI图像中的肿瘤分割。在最后阶段,提出了一个增强的CNN模型3,该模型具有11个隐藏层,共有241,624个可训练参数,用于将分割后的肿瘤区域分为四个胶质瘤肿瘤类。实验使用BraTS MRI数据集进行。将提出的CNN模型用于二分类和多类肿瘤分类的实验结果与现有的CNN模型(如LeNet,AlexNet和GoogleNet)以及最新文献进行了比较。
摘要 阿尔茨海默病 (AD) 是最常见的痴呆症类型。在发达国家,65 岁以后的 AD 发病率估计约为 5%,85 岁以上的发病率高达 30%。AD 会破坏脑细胞,导致人们失去记忆力、心理功能和继续日常活动的能力。这项研究的结果可能会帮助专家通过患者的磁共振成像 (MRI) 区分 AD 患者和正常对照 (NC) 来做出决策。性能进化被应用于来自阿尔茨海默病神经成像计划 (ADNI) 收集的 346 张磁共振图像。深度信念网络 (DBN) 分类器用于实现分类功能。权重用于测试所提出方法的识别能力,并使用样本训练集对网络进行训练。因此,这项研究提供了一种利用自动分类识别阿尔茨海默病的新方法。在测试中,它的表现令人钦佩,当将灰度共生矩阵 (GLCM) 特征与 DBN 相结合时,对 AD 和 NC 研究类别的准确率达到 98.46%。关键词:阿尔茨海默病、深度信念网络、灰度共生矩阵、磁共振成像。
本论文中引用的其他人作品中的所有句子或段落均已明确注明作者、作品和页码。任何非本论文作者作品的插图均已获得原作者的明确许可,并已明确注明。我理解,不这样做就等同于剽窃,将被视为整个学位考试不及格的理由。
背景。脑机界面(BMI)是一种接收大脑信号的设备或实验设置,对其进行分类,然后将其用作计算机命令。对哪种学习方法(深度学习,卷积网络,AI等)尚无共识和/或每种方法中的算法类型最好运行BMI。目标。这项工作的目的是建立一个低成本,便携式,易于使用和可靠的电动图像电脑图(EEG-MI)的BMI;比较不同的算法,以找到最适合这种情况的算法。方法。在这项研究中,从Physionet公共数据和使用Emotiv头戴式耳机获得的Motor Imager(MI)EEG信号都与四种机器学习算法进行了分类。这些算法是:结合线性判别分析(LDA),深神经网络(DNN),卷积神经网络(CNN)和最终riemannian最小值(RMDM)的常见空间模式(CSP)。结果。每种方法的平均准确性分别为78%,66%,60%和80%。获得了基线与运动图像(MI)比较的最佳结果。随着全球培训公共数据的,获得了86.4%至99.9%的精度。 使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。 对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。 在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。随着全球培训公共数据的,获得了86.4%至99.9%的精度。使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。 对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。 在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。结论。CSP和RMDM算法产生了快速(计算时间)和有效的(成功率)工具,以实现为BMI中的深度学习算法。
摘要。如今,人类在各种高风险和低风险的决策任务中使用人工智能辅助。然而,人类对人工智能辅助的依赖往往不是最理想的——人们对人工智能的依赖程度要么过低,要么过高。我们对嘈杂的图像分类任务中的人机辅助决策进行了实证研究。我们分析了参与者对人工智能辅助的依赖程度以及人机辅助的准确性,并与人类或人工智能独立工作进行了比较。我们证明,参与者没有表现出自动化偏见,这是人类在人工智能辅助下表现出的一种广泛报道的行为。在这种特定的人工智能辅助决策实例中,人们能够在需要时正确地推翻人工智能的决策,并在综合表现上接近理论上限。我们认为,与之前的研究结果存在差异的原因在于:1)人们擅长对日常图像进行分类,并且对自己执行任务的能力有很好的了解;2)当被要求表明对自己的决策的信心时,人们会进行深思熟虑的元认知行为;3)人们能够通过结合每次试验后提供的反馈来建立良好的人工智能心理模型。这些发现应该可以为未来的实验设计提供参考。