摘要:化脓性链球菌 Cas9 蛋白 (SpCas9) 是微生物中基于 CRISPR 的免疫系统的一个组成部分,已广泛用于基因组编辑。该核酸酶与向导 RNA (gRNA) 形成核糖核蛋白 (RNP) 复合物,从而诱导 Cas9 结构变化并触发其切割活性。在这里,电子圆二色性 (ECD) 光谱用于确认 RNP 的形成并确定其各个组成部分。ECD 光谱具有区分 Cas9 和 gRNA 的特征,前者显示出负/正谱,最大值位于 221、209 和 196 nm,而后者显示出正/负/正/负模式,条带分别位于 266、242、222 和 209 nm。首次展示了 gRNA:Cas9 RNP 复合物的实验 ECD 光谱。它表现出双标记正/负 ECD 偶联,最大值位于 273 和 235 nm,并且与每个 RNP 成分的单独光谱有显著不同。此外,Cas9 蛋白和 RNP 复合物在 ECD 测量后仍保留生物活性,并且它们能够在体外结合和裂解 DNA。因此,我们得出结论,ECD 光谱可被视为一种快速且无损的方法,用于监测 Cas9 蛋白因 Cas9 和 gRNA 相互作用而发生的构象变化,以及鉴定 gRNA:Cas9 RNP 复合物。
半导体行业是新加坡的主要制造业之一;占2014年制造总价值的17.6% - 该行业雇用了3600名工人,约占电子劳动力总数的53%。今天,新加坡是世界上三大晶圆铸造厂的所在地,全球四家顶级外包组装和测试服务公司,以及世界上9家顶级女装的半导体公司。其中一些公司包括Broadcom,NXP,Mediatek,Micron Semiconductor Asia PTE Ltd,United Microelectronics Corporation,STATS CHIPPAC,QUAPCOM,Qualcomm和Silicon Manufacturing Company的系统。在2013年,我们的晶圆厂每月生产约100万个晶圆,在全球范围内约有10个晶圆的晶圆。工作详细信息:
根据与诺斯罗普·格鲁曼公司的协议,合作者将有一段预定的时间(“设计期”),使用诺斯罗普·格鲁曼公司提供的模型和 PDK 进行设计。设计期结束后,合作者需要在规定的截止日期前向代工厂提交设计,以便将其设计纳入工厂运行。合作者还需要提交其设计和文档,以便在 STARRY NITE IP 存储库中存档。一旦掩模完成流片,诺斯罗普·格鲁曼公司将使用该掩模制造晶圆。请注意,诺斯罗普·格鲁曼公司不会对电路进行直流或射频测试;整个工厂流程中都会测量掩模上的过程控制监视器 (PCM) 结构。b. 合作者同意公布设计提交和掩模流片时间表。c. 请注意,美国政府对哪些设计将投入生产拥有最终决定权
半导体价值链容易受到干扰,这对现代经济构成了相当大的风险。更好的数据对于决策者识别瓶颈、监控特定半导体类型的供需平衡以及管理干扰至关重要。本文提出了半导体类型和生产设施的通用分类法,以促进协调的数据收集和共享。该分类法将半导体产品分为四大类——“逻辑”、“内存”、“模拟”和“其他”——并根据其普及程度和特定功能细分为子类别。半导体生产设施根据所使用的技术和生产不同类型半导体的能力、安装的生产能力以及其他相关工厂(和公司)特征进行分类。该分类法将成为半导体生产数据库的基础,并将在未来进行修订,以跟上半导体技术的发展。
本文介绍了一种无需依赖载体晶圆即可直接放置芯片到晶圆的替代方法,该方法专门针对混合键合、3DIC 和集成光子学应用而设计。芯片到晶圆键合是异质垂直集成设备制造中的关键工艺,通常涉及在集成到目标晶圆之前将各个芯片放置到载体或处理晶圆上的中间步骤。这种传统方法增加了成本、复杂性、潜在的兼容性问题和工艺步骤。在本研究中,我们提出了一种简化的工艺,消除了对载体晶圆的需求,从而简化了集成并减少了制造步骤。利用大气等离子清洗,我们清洁并激活芯片和目标晶圆的表面,以促进直接放置键合。通过实验验证,我们证明了这种方法的可行性和有效性。我们的研究结果展示了成功的芯片到晶圆键合,界面污染最小,键合强度增强。此外,我们还探讨了大气等离子清洗参数对键合质量的影响,为工艺优化提供了见解。这项研究为芯片到晶圆键合提供了一种有前途的替代方案,提高了垂直集成电路制造的效率和简便性,特别是在混合键合、3DIC 和集成光子学应用领域。
8 三星电子有限公司三星先进技术研究所 (SAIT),韩国水原 16678 gwanlee@snu.ac.kr 摘要 (Century Gothic 11) 通过化学气相沉积 (CVD) 在具有外延关系的晶体基底(例如 c 面蓝宝石)上合成了晶圆级单晶过渡金属二硫属化物 (TMD)。由于 TMD 外延生长的基底有限,因此需要将转移过程转移到所需的基底上进行器件制造,从而导致不可避免的损坏和皱纹。在这里,我们报告了通过过渡金属薄膜的硫属化在超薄 2D 模板(石墨烯和 hBN)下方的 TMD(MoS 2 、MoSe 2 、WS 2 和 WSe 2 )的异轴(向下排列)生长。硫族元素原子通过石墨烯在硫族化过程中产生的纳米孔扩散,从而在石墨烯下方形成高度结晶和层状的TMD,其晶体取向排列整齐,厚度可控性高。生长的单晶TMD显示出与剥离TMD相当的高热导率和载流子迁移率。我们的异轴生长方法能够克服传统外延生长的衬底限制,并制造出适用于单片3D集成的4英寸单晶TMD。参考文献 [1] Kang, K. 等。具有晶圆级均匀性的高迁移率三原子厚半导体薄膜。Nature 520 , 656-660 (2015).[2] Liu, L. 等。蓝宝石上双层二硫化钼的均匀成核和外延。Nature 605 , 69-75 (2022) [3] Kim, K. S. 等人。通过几何限制实现非外延单晶二维材料生长。Nature 614 , 88-94 (2023)。
关键词:光子剥离、临时键合和解键合、薄晶圆处理、键合粘合剂 摘要 临时键合和解键合 (TB/DB) 工艺已成为晶圆级封装技术中很有前途的解决方案。这些工艺为晶圆减薄和随后的背面处理提供了途径,这对于使用 3D 硅通孔和扇出晶圆级封装等技术实现异质集成至关重要。这些对于整体设备小型化和提高性能至关重要。在本文中,介绍了一种新颖的光子解键合 (PDB) 方法和相应的键合材料。PDB 通过克服与传统解键合方法相关的许多缺点来增强 TB/DB 工艺。PDB 使用来自闪光灯的脉冲宽带光 (200 nm – 1100 nm) 来解键合临时键合的晶圆对与玻璃作为载体晶圆。这些闪光灯在短时间间隔(~300 µs)内产生高强度光脉冲(高达 45 kW/cm 2 ),以促进脱粘。引言近年来,三维 (3D) 芯片技术在微电子行业中越来越重要,因为它们具有电路路径更短、性能更快、功耗和散热更低等优势 [1]。这些技术涉及异质堆叠多个减薄硅 (Si) 芯片(<100 µm)并垂直互连以形成三维集成电路 (3D-IC) [2]。在现代 3D 芯片技术中,可以使用硅通孔 (TSV) 来代替传统的引线键合技术在硅晶圆之间垂直互连。减薄晶圆使得这些 TSV 的创建更加容易 [3, 4]。为了便于处理薄硅晶圆,需要对硅晶圆进行临时键合。在临时键合工艺中,次级载体晶圆充当主器件晶圆的刚性支撑,并利用两者之间的粘合层将两个晶圆粘合在一起。晶圆粘合在一起后,即可进行背面研磨和后续背面处理。背面处理后,减薄后的晶圆和载体堆叠
使用比较器技术结合圆闭合原理,无需参考单独校准的参考工件,即可对多面镜、分度台和旋转台以及角度编码器的角度划分进行全圆校准。后者是平面角度的自然守恒定律,自欧几里得时代以来就广为人知,表示平面上任何一点周围的角度之和等于 2 � 弧度 (360 � )。如果将圆分成 n 个角段 A 1 、A 2 、 。..、A n 以及每个角段与未知参考角 X 之间的差异进行测量,则闭合为数据提供了约束,从而能够为所有 n + 1 个未知数提供完整的解决方案。圆闭合是众多自证比较技术之一,采用多次测量以及对测量系统组件进行适当的重新排列。参考文献 [1] 回顾了此类技术及其在尺寸计量中的应用。
晶圆加工技术的趋势要求晶圆载体技术不断进步,以支持当今先进的半导体加工设施。我们的 20X 系列 200 毫米晶圆运输载体可满足当今 200 毫米晶圆厂的自动化、污染控制和生产力要求。这些晶圆载体专为先进的晶圆运输而设计,与传统的中低端晶圆载体相比,具有显著的性能优势,包括精确的晶圆存取、可靠的设备操作和安全的晶圆保护。
客户利益 在安装过程中,采用了 GF 管路系统提供的多种专业解决方案,例如 ProSite 和 Engineering,提供相关专业知识。客户获得了专业知识支持,并在有限的空间内构建了塑料管道模块,同时保持了所有组件的高纯度。除了根据其对高纯度和耐化学性的需求获得合适的可持续解决方案外,ASE 还通过依赖 GF 管路系统作为一站式解决方案提供商,而不是与多家供应商协调,与以前的项目相比节省了 10% 的工作时间。从长远来看,轻便、非常耐用且无腐蚀的管道系统将减少韩国晶圆清洁业务的维修需求和总体成本。