将自动卫星控制系统引入历史上以人类在循环运营为主的太空误差环境中,将需要对网络安全措施进行更集中的了解,以确保空间系统的安全和安全性。 在卫星控制的地面段,私人通信天线的首次亮相以及迁移到基于云的运营或任务中心的首次亮相,将为国防部(DOD)和商业卫星运营提供新的网络保护要求。 不再是将自动化引入卫星操作的问题,而是卫星运营商可以在越来越多的竞争,有争议和拥挤的太空域中适应控制自动化的速度并促进网络安全。将自动卫星控制系统引入历史上以人类在循环运营为主的太空误差环境中,将需要对网络安全措施进行更集中的了解,以确保空间系统的安全和安全性。在卫星控制的地面段,私人通信天线的首次亮相以及迁移到基于云的运营或任务中心的首次亮相,将为国防部(DOD)和商业卫星运营提供新的网络保护要求。不再是将自动化引入卫星操作的问题,而是卫星运营商可以在越来越多的竞争,有争议和拥挤的太空域中适应控制自动化的速度并促进网络安全。
弹性卫星通信企业要求太空部队利用成熟和新兴的太空技术以及新颖的系统架构,而这些技术迄今为止主要由商业部门推动。美国太空部队可以利用这些技术来发展构成卫星通信系统架构基本构件的三个部分:轨道段,由配备通信有效载荷和其他任务系统的在轨卫星组成;链路段,将网络中的各个节点连接在一起并在它们之间传输数据;地面段,涵盖地面域内发射、操作和利用航天器所需的所有设备 - 包括控制站、天线和卫星电话等用户设备。
我们注意到,CER 和 NIS2 指令涉及太空领域的一些方面,同时考虑到在太空段立法方面排除协调(《欧盟运作条约》第 189(2) 条)。这些指令已经涵盖了地面段的一些网络安全和弹性要求,运营商范围有限。如果补充这些指令是必要的,并且符合《欧洲联盟运作条约》(TFEU),我们建议考虑是否仍将监管措施的范围限制在对欧盟具有不可或缺作用的太空运营的最关键实体。当涉及到更广泛的太空运营商时,欧盟层面更相称的干预措施可能是激励措施。
WSF SV-1 继续按计划于 2023 年 9 月发射。该计划在 2020 年 12 月举行的任务保证技术交流会议上解决了剩余的七个未解决的 CDR 进入/退出标准。此外,SV-1 及其相关地面段的生产在单元和子系统的生产和测试方面继续取得进展。微波传感器数据处理软件 (MWSDPS) 的开发于 2021 年 6 月成功完成,该软件将 SV 中的数据转换为可供用户使用的有用数据。随后,MWSDPS 交付给用户进行早期集成和测试。此外,WSF 于 2020 年 12 月开始开发测试,并于 2021 年 8 月成功完成首次网络测试。微波成像仪于 2021 年 5 月开始集成和测试,主要子系统全年交付和集成。
移动和机动。卫星可能能够在轨道上进行机动,从而阻止对手跟踪和瞄准它们。机动能力受到机载燃料限制、轨道力学以及规划和执行机动所需的时间的限制。此外,卫星的重新定位通常会降低或中断其任务。移动地面节点的使用使对手定位和瞄准指挥和任务数据处理中心以及可部署太空能力的尝试变得复杂。然而,这些地面段节点的移动也可能影响系统的能力,因为它们必须仍然保持与相关空间段的视线。链路段中的移动和机动可能包括改变频率、将用户转移到其他卫星(无论是商用还是军用)以及移动点波束或改变波束形状等操作。移动和机动还可以利用备用通信路径,如光纤或战区通信架构,如视距或机载中继。
为了应对上述新情况,ATRIA 提出的工具旨在为地面段技术带来颠覆性进步,原因如下。首先,AI 算法将取代有效载荷工程师在有效载荷配置方面迄今为止不可或缺的作用。其次,AI 算法和数据集将提供有用的信息,不仅可以自主优化卫星资源分配,还可以探索这些复杂有效载荷的新功能并充分利用它们。最后但并非最不重要的是,该工具旨在通用,因此对有效载荷透明,为所提出的系统提供附加值,并将其转变为卫星制造商的经济高效的解决方案。这种提议的通用灵活有效载荷管理成本较低,将增加其标准化的吸引力。ATRIA 计划实现其他成果,例如灵活的有效载荷模拟器。ATRIA 工具将在 EUTELSAT KONNECT 和 KONNECT VHTS 卫星上进行验证。
该项目由欧洲、德国、荷兰、挪威、西班牙、瑞典、瑞士和英国共同资助,并负责设计和开发第一颗卫星作为 EPS 的空间段。EPS 计划正在资助建造两颗循环卫星、发射所有三颗卫星以及设计和建造地面段以操作卫星并处理、存档和分发收集的数据。EPS 的设计总运行寿命为 14 年。EPS 计划还为 ESA MetOp-1 计划提供资金和物质捐助,提供 7.46 亿欧元成本的 36%(当前条件)。因此,ESA/Eumetsat 单一空间段团队成立,通过与工业总承包商(EADS-Astrium,图卢兹,法国)签订联合合同来管理 MetOp 的开发。虽然这种安排不可避免地会导致官僚主义加剧,并且可能
第 3 章 新的通信系统 .........................................3 3.1 所需总系统性能 (RTSP) 概念 ..............................3 3.2 所需通信性能(RCP)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 3.3 数据链接。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 3.3.1 VDL 模式 1 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 3.3.2 VDL 模式 2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 3.3.3 VDL 模式 3。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 3.3.4 VDL 模式 4。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 3.3.5 S 模式下的数据链路。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 3.3.6 高频数据链路(HFDL)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 3.4 控制器-飞行员数据链通信(CPDLC)。。。。。。。。。。。。。。。。。。。。。。。。。。。5 3.5 出发前许可。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 3.6 ATS 单元之间的数据链路(AIDC)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 3.7 航空卫星移动业务(AMSS)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 3.7.1 基本系统注意事项。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 3.7.2 卫星通信的空间部分。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 3.7.3 卫星通信地面段 ........................10 3.7.4 卫星通信的机载部分 ..........................10 3.7.5 卫星通信系统的概念 ............................10 3.8 航空电信网络(ATN) ...............................11 3.9 新通信系统的好处 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12
新成立的美国太空军计划到 2025 年在下一代高架持续红外 (Next Gen OPIR) 系统上投入约 144 亿美元。1 使用高架持续红外传感器的空间系统为美国国防和情报部门提供必要的发射探测、导弹跟踪和侦察数据,以缓解、预测、跟踪和应对各种威胁。下一代 OPIR 将取代目前的卫星系统——天基红外系统 (SBIRS),主要由空间和地面段的开发工作组成。空间段的第一阶段 Block 0 于 2018 年启动,将由五颗卫星组成。与此同时,太空军正在开发一种名为未来作战弹性地面演进 (FORGE) 的新地面系统,以操作卫星并处理它们收集的任务数据。太空军计划在 2025 财年末发射第一颗卫星。
随着哥白尼计划及其丰富的开放数据的出现,地球观测应用和服务开发领域越来越多地采用大数据技术。这种采用首先与高效的数据存储和处理基础设施有关,但最重要的是数据分析和应用程序开发框架。高效的数据检索、增强机器学习技术的挖掘和互操作性是充分利用现有资产、创造更多价值以及随后促进欧洲成员国经济增长和发展的关键。在 CANDELA 中,特别关注重用和开放性。事实上,该项目打算在联盟成员提供的可用组件之上构建各种模块和框架。为了最大限度地利用现有资产,该项目热衷于广泛传播其发展成果并向各种用户社区提供解决方案。在此背景下,对于 CANDELA 系统的第一个版本,DLR 建议使用为 TerraSAR-X 地面段开发的 EOLib 系统,并使其适应 Compernincus 数据,并开发一个新的数据融合模块。