我们认为,使用统计决策理论(SDT)进行全面的样本外(OO)评估,应取代机器学习(ML)预测研究中K折叠和常见任务框架验证的当前实践。SDT提供了一个正式的常见框架,用于在所有可能的(1)培训样本中执行全面的OOS评估,(2)可能会生成培训数据的人群,以及(3)预测兴趣的种群。关于特征(3),我们强调,SDT要求从业者直接面对未来看起来不像过去的可能性,并在构建预测算法时可能需要从一个人群推断到另一个人群。SDT在抽象方面很简单,但通常在计算上要求实施。,当通过均方误差或通过错误分类速率衡量预测准确性时,我们讨论了SDT的可行实施进度。我们总结了研究设置,其中将从预测感兴趣的人群的亚群中产生培训数据。我们考虑条件预测,并对可能生成培训数据的可能人群的状态空间进行了替代限制。我们提出了该方法的说明性应用于预测患者疾病以告知临床决策的问题。我们通过呼吁ML研究人员,计量经济学家和统计学家来扩大实施SDT是可行的领域的结论。我们有机会在西北大学和芝加哥大学的研讨会以及布朗大学和康奈尔大学会议上介绍这项工作。
通过融合图像可以准确地对任何人体健康问题进行医学诊断。在图像融合中,数据从不同的图片组合在一起,使我们仅在一张图片中就能获得大量信息。图像融合在医学成像应用中起着重要作用,它可以帮助放射科医生在 CT 和 MR 脑图像中发现异常。多模态 (MM) 是融合技术之一。在 MM 中,会融合不同的模态,例如计算机断层扫描 (CT)、正电子发射断层扫描 (PET) 和磁共振成像 (MRI) 扫描。每种模态都有各种特征,具有各种类型的功能信息和互补的解剖结构。用于发现脑中风和肿瘤的常用扫描技术是 MRI 和 CT。在本文中,将同一患者的脑 MR 图像的不同切片:T1 加权 (T1)、T1 对比增强 (T1ce)、T2 加权 (T2) 和液体衰减反转恢复 (Flair) 融合在一起,以诊断脑病理和异常。使用离散小波变换 (DWT)、拉普拉斯金字塔变换技术和主成分分析 (PCA) 融合技术进行了多次实验。对具有更多信息内容的不同融合图像进行了比较分析。这里考虑的性能指标包括峰值信噪比、均方误差和信噪比。进行了不同的实验,使用不同的融合技术对脑部 MR 图像的 Flair 和 T2 切片进行融合,在 SNR 和 PSNR 方面取得了更好的结果。
论文评分和反馈是教育评估过程的基本组成部分。手动论文评估的最大挑战之一是它需要大量的时间和精力,这往往会导致不一致和延迟。此外,语言固有的复杂性和某些评分标准的主观性继续对一致性构成障碍。这项研究考察了三种先进的大型语言模型 (LLM) - Mistral-7B-Instruct、Llama-2-13b 和 Llama-2-13b-finetuned - 在论文评估自动化中的有效性。该研究根据六项基本熟练程度标准(包括衔接性、句法、词汇、措辞、语法和惯例)比较了这些模型在 Kaggle 的 1,500 篇议论文数据集上的表现。它采用四个统计指标进行评估:平均绝对误差 (MAE)、均方误差 (MSE)、均方根误差 (RMSE) 和平均绝对百分比误差 (MAPE)。研究结果显示,不同评估标准下的模型性能存在显著差异。Mistral-7B-Instruct 在大多数类别中的表现始终优于 Llama 模型。Llama-2-13B 微调模型在多个标准上都比其基础模型有显著改进,这表明微调基础模型可以用于论文评估等特定任务。研究结果对教育和技术领域都具有重要意义,因为他们可以利用这些进步来提高大规模论文评估的效率。未来的工作可以集中在通过微调更广泛的 Transformer 模型来扩大分析范围,以更好地了解各种架构如何影响自动论文评估的性能。
在药物发现中,药物-靶标亲和力 (DTA) 被视为至关重要的一步,因为它有助于在开发过程中识别最有前途的候选药物。由于必须考虑药物和靶分子的结构和功能,以及它们复杂而非线性的相互作用,DTA 预测是一项具有挑战性的任务。本研究的目的是提出一种新颖的 DTA 预测框架,该框架利用图神经网络 (GNN) 的交叉注意网络 (CAN) 的优势。然而,使用 GNN 表示图会保留其 3D 结构信息。现有的基于注意力的方法并未充分利用它们。我们的框架使用 CAN 通过分析药物分子的不同部分如何与蛋白质的特定区域相互作用来捕获药物-靶标对的更准确表示。我们在顺序架构中使用 GIN 和 GAT 来捕获药物图分子的局部和全局结构信息。我们在两个基准数据集 Davis 和 KIBA 上评估了所提出方法的性能。其性能令人鼓舞,在均方误差 (MSE) 和一致性指数 (CI) 方面优于许多最先进的方法。具体来说,对于 Davis 数据集,我们实现了 0.222 的 MSE 和 0.901 的 CI,而对于 KIBA,我们获得了 0.144 的 MSE 和 0.883 的 CI。我们的方法提高了相互作用分析的可解释性和特异性,为药物发现过程提供了更深入的见解,并为预测的 DTA 提供了有价值的解释。我们的研究代码可在以下网址获取:https://github.com/fsonya88/CAN-DTA。
本文考虑了一种新型的多代理线性随机近似算法,该算法是由多维亚噪声和一般共识型相互作用驱动的,其中每个剂的局部随机近似过程都取决于其邻居的信息。用定向的图形描述了代理之间的互连结构。当通过双随机矩阵(至少在预期中)描述了基于共识的随机近似算法的收敛性,而当互连矩阵简单地是随机的情况下,对这种情况的了解较少。对于任何相关相互作用矩阵的均匀连接的图形序列,该论文在均方误差上得出有限的时间界限,定义为算法偏离相关普通微分方程的唯一平衡点的偏差。对于互连矩阵随机的情况,在没有通信的情况下,平衡点可以是所有局部平衡的任何未指定的凸组合。都考虑了恒定和随时间变化的台阶尺寸的情况。分布式的时间差学习将作为说明性应用。©2023 Elsevier Ltd.保留所有权利。在要求凸组合必须是直接平均值并且任何一对邻近代理之间的互动的情况下,可能是单向的,因此不能以分布的方式实现双重随机矩阵,本文提出了按下的Push-type分布式近似算法,并为时间限制的范围分析范围,以实现其范围,并为时间限制范围,以实现其范围,以实现时间表,以实现时间表的范围,以实现时间范围的范围,以实现时间范围,以实现有限的范围,以实现有限的范围,以实现有限的范围,以实现有限的范围,以实现有限的范围,以实现范围的范围,以实现时间范围。带有随机矩阵的算法,并开发了Push-sum算法的新型特性。
*Jae-Yong Lee,教授,韩瑞大学(泰安校区)无人机系统系,韩国忠清南道泰安郡南面 Gomseom-ro,邮编 32158,jylee@hanseo.ac.kr *通讯作者摘要。本研究旨在确定三种语言能力对三种编程兴趣的影响。本研究的对象是 39 名开始学习 C 语言编程的大学生。它将语言能力分为“阅读”、“写作”和“语法理解”,将编程兴趣分为“情境兴趣”、“潜在兴趣”和“实际兴趣”,并分析这三类中每个变量的影响。本研究使用 Pandas 进行分析,并进行了信度测试、描述性统计分析、相关性分析和回归分析。语言能力三项与编程兴趣三项之间的 Pearson 相关系数如下:第一次调查为 .54 ~ .88;第二次调查为 .54 ~ .95;第三次调查为 .66~.94。所有 p 值均 <.01。在学生学习数据后进行的第一次调查中,a_value 为 25.016,b_value 为 0.256。在第二次调查中,a_value 为 23.009,b_value 为 0.275。在第三次调查中,a_value 为 18.237,b_value 为 0.330。第一次、第二次和第三次调查的 R_squared 值分别为 .530、.564 和 .747。绩效评估结果显示,第一、二、三次调查的均方误差分别为30.924、30.645、22.069,RMSE误差分别为5.561、5.536、4.698。本研究发现语言能力对编程兴趣有正向影响,有助于学习者提高编程写作能力。关键词:语言能力,新手程序员,编程能力,编程心理学。
电荷状态(SOC)估计对于电动汽车(EV)的安全有效运行至关重要。这项工作提出了一个混合多层深神经网络(HMDNN)基于EV中的SOC估计方法。此HMDNN使用山瞪羚优化器(MGO)作为深神经网络的培训算法。我们的方法利用了EV电池的SOC与电压/当前测量值之间的固有关系,以实时准确估算SOC。我们在现实世界中电动汽车充电数据的大量数据集上评估了我们的方法,并与传统的SOC估计方法相比证明了其有效性。采用了四种不同的电动汽车电池数据集,这些电动汽车是动态压力测试(DST),北京动态压力测试(BJDST),联邦城市驾驶时间表(FUD)和高速公路驾驶时间表(US06),其温度不同的0 O C,25 O C,45 O C,45 O C,45 O C。比较是用基于Mayfly优化算法的DNN,基于粒子群优化的DNN和基于后传播的DNN进行的。所使用的评估指标是归一化的均方误差(NMSE),均方根误差(RMSE),平均绝对误差(MAE)和相对误差(RE)。所提出的算法在所有数据集中平均达到0.1%NMSE和0.3%的RMSE,这验证了所提出模型的有效性能。结果表明,与现有方法相比,提出的基于神经网络的方法可以实现更高的准确性和更快的收敛性。这可以实现更有效的EV操作并改善电池寿命。
摘要 - 隐身是将秘密信息隐藏在其他媒体中的实践,例如图像,音频,视频和文本。在当今社会中,它变得越来越重要,作为实现私人和安全沟通的一种方式。该研究项目的重点是图像隐志技术,这些技术用于通过统计切解技术来逃避秘密信息的检测。这项研究的目的是比较和评估不同的图像隐志方法,研究其实施复杂性,并提出一个框架以改善当前方法。这项研究将比较不同的地理技术在避免通过stemansysis检测中的效率,并可能导致未来更好的隐身技术的发展。本文重点介绍了空间域中的三种密集志方法:最小显着的位(LSB),像素值差异(PVD)和基于边缘的数据嵌入(EBE)方法。使用这三种方法进行了一个简单的实验来对几个图像进行加密,并研究了使用均方误差(MSE)和峰值噪声比(PSNR)的LSB的失真度量。尽管在实验中认为LSB方法可以接受失真度量结果,但所有方法都会导致文件容量显着差异。这表明需要进一步增强加密的安全性,以便不会轻易发现秘密消息。因此,在本文中,我们在使用PVD加密之前,使用Morse Code,基础64,SHA-245和高级加密标准(AES)提出了一种概念化的增强。关键字 - 隐肌,切解分析,空间域,基于边缘的数据嵌入。
大脑的生物年龄与其实际年龄 ( CA ) 不同,可用作神经/认知疾病过程的生物标志物和死亡率的预测指标。大脑年龄 ( BA ) 通常使用机器学习 (ML) 从磁共振图像 (MRI) 中估算出来,而这种机器学习很少能表明大脑区域特征对 BA 的贡献。利用 3 418 名健康对照 (HC) 的总体训练样本,我们描述了一个岭回归模型,该模型量化了每个区域对 BA 的贡献。在对 651 名 HC 的独立样本进行模型测试后,我们计算每个区域脑容量的偏决定系数 ¯ R 2 p 以量化其对 BA 的贡献。还使用实际年龄和生物年龄之间的相关性 r、BA 估计值的平均绝对误差 ( MAE ) 和均方误差 ( MSE ) 来评估模型性能。在训练数据上,r = 0.92 ,MSE = 70.94 年,MAE = 6.57 年,且¯ R 2 = 0.81 ;在测试数据上,r = 0.90 ,MSE = 81.96 年,MAE = 7.00 年,且¯ R 2 = 0.79 。体积对 BA 贡献最大的区域是伏隔核(¯ R 2 p = 7.27 %)、颞下回(¯ R 2 p = 4.03 %)、丘脑(¯ R 2 p = 3.61 %)、脑干(¯ R 2 p = 3.29 %)、后外侧沟(¯ R 2 p = 3.22 %)、尾状核(¯ R 2 p = 3.05 %)、眶回(¯ R 2 p = 2.96 %)和中央前回(¯ R 2 p = 2.80 %)。尽管我们的岭回归表现不及最先进的 ML 方法,但它确定了每个大脑结构对整体 BA 的重要性和相对贡献。除了可解释性和准机械见解之外,我们的模型还可用于验证未来 BA 估计的 ML 方法。
本研究开发了一种从脑电图 (EEG) 信号中去除眼部和肌肉伪影的新型混合方法,即 EFICA-TQWT。它是高效快速独立分量分析 (EFICA) 方法与可调 Q 因子小波变换 (TQWT) 的结合。本文的主要贡献是在滤波系统中应用 3D 插值方法。本研究使用了三个 EEG 数据集,两个健康数据集和一个癫痫数据集。每个数据集的受试者选择都是在生理学专家的帮助下完成的。采用的选择标准是处理后的记录中是否存在肌肉和眼部伪影。首先,使用具有径向基函数的支持向量机 (SVM) 对噪声通道进行自动分类,以便从每个 EEG 记录中删除与最嘈杂通道相对应的信号。将 SVM 的自动分类结果与专家分类的结果进行了比较。 SVM 分类的准确率为 97.45%,灵敏度为 86.66%,特异性为 100%。将对每个受试者的国际 10/20 系统的其余 EEG 通道应用混合伪影去除方法。然后,对消除的通道信号进行重建,以获得滤波良好的信号。通过计算均方误差 (MSE) 和信噪比 (SNR) 来评估所提出的滤波过程。针对健康和病理 EEG 数据集,对所提出的方法 (EFICA-TQWT) 和其他滤波技术 (Fast-ICA、DWT、TQWT 和 EFICA) 进行了比较研究。EFICA-TQWT 方法给出了最佳结果,MSE 最小,SNR 最大,尤其是在应用 3D 插值方法的情况下。此外,为了优化所提系统的计算时间,采用计算统一设备架构,基于图形处理单元开发了该过滤系统的并行实现。