摘要:在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了确定飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术来执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器获取过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,我们采用自修复神经模型 (SHNM) 来预测缺失数据。用于恢复的数据有 5200 个头部运动的 6-DoF 样本。SHNM 可实现超过 85% 的准确率来预测三组不同的缺失数据。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型
段。由参考基因组的定向,连续的基因组间隔,用⟨染色体,起始坐标,端坐标⟩表示。一个供体染色体被描述为段的有序序列。断点。通过一对非粘附坐标描述了一个断点,该坐标表示从一个段中的捐赠者中的一个段过渡到另一个段。染色体组。一组所有同源供体染色体具有相同的染色体认同。染色体认同是由最有代表的丝粒确定的,如果Chro-Mosome是分散的,则由其组成段的染色体起源最多。染色体簇。一对染色体组表示为依赖。染色体簇是依赖染色体组的连接成分。染色体簇通常由一组规范结构变体定义,每个变体都有ISCN命名法(细胞遗传学命名的国际标准)。分子核型。提出的文件格式明确描述了核苷酸级分辨率的核型。此文件格式包含一个跨越整个参考基因组的段的字典,然后是一组有序的片段序列,每个片段代表染色体。
图1。a)21个手敲门坐标在检测到的手部区域内的坐标,b)468 3D面对地标和c)33个车身地标位置,分别使用Mediapipe Hand,Facemesh和姿势解决方案。 为了解决这个问题,我们将手分为四个姿势,即前部,内部,外部和背面,以增强穴位检测过程的准确性和可靠性。 为此,为了确定棕榈正常,我们在棕榈的平面内选择了三个点。 地标0用作我们的参考点,我们用它来计算向量1和2。 通过采用这些向量的交叉产物,我们获得了棕榈正常(图 2)。 最后,我们计算z方向和棕榈正常之间的角度。 此角度有助于我们区分不同的手姿势。 脸部使用了相同的方法。 通过使用MediaPipe提供的地标坐标,可以通过应用简单的数学和代数方程(例如等式1和eq.2)来得出兆头位置是可行的。 这些计算基于地标和特定穴位位置之间的相对距离和角度。a)21个手敲门坐标在检测到的手部区域内的坐标,b)468 3D面对地标和c)33个车身地标位置,分别使用Mediapipe Hand,Facemesh和姿势解决方案。为了解决这个问题,我们将手分为四个姿势,即前部,内部,外部和背面,以增强穴位检测过程的准确性和可靠性。为此,为了确定棕榈正常,我们在棕榈的平面内选择了三个点。地标0用作我们的参考点,我们用它来计算向量1和2。通过采用这些向量的交叉产物,我们获得了棕榈正常(图2)。最后,我们计算z方向和棕榈正常之间的角度。此角度有助于我们区分不同的手姿势。脸部使用了相同的方法。通过使用MediaPipe提供的地标坐标,可以通过应用简单的数学和代数方程(例如等式1和eq.2)来得出兆头位置是可行的。这些计算基于地标和特定穴位位置之间的相对距离和角度。
能够根据特定光源和两度标准观察者,用三刺激值 X Y Z 客观地指定任何颜色。颜色可以用从 X Y Z 计算出的坐标 x &y 表示。但是,x 的颜色速度并不均匀。不久之后,开发了另一种颜色坐标系统,用于以 Lab 坐标的形式客观指定颜色。1964 年,CIE 接受了光谱颜色的配色函数,以用于更宽的视野,即从两度到十度。十年后,国际标准化组织标准化了对方的色彩坐标系统,并接受了计算 L* 的线性变换方程。a*。h* 来自 X Y Z 值。这个“CIELAB”色彩空间比用 x. r 坐标获得的颜色空间更加统一。然而。当从 CIE L* 计算色差时。a*。h* 值,观察到许多缺陷。八十年代,人们进行了大量工作来改进色差方程、精确测量颜色以及解释数据以用于各种应用,例如客观规范、通过-失败、色度分类、色度排序。色度搜索、白度/黄色-
摘要。在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了定位飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器采集过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,采用自修复神经模型 (SHNM) 来预测丢失的数据。用于恢复的数据有 5200 个 6-DoF 头部运动样本。SHNM 对三组不同的缺失数据的预测准确率超过 85%。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型
摘要 - 基于损耗的几何点云压缩(G-PCC)不可避免地会损害点云的几何信息,这在诸如分类等任务等任务中的重新结构和/或误导决策中降低了经验质量(QOE)。为了解决它,这项工作提出了GRNET,以恢复G-PCC压缩大规模点云的几何形状。通过分析原始和G-PCC压缩点云的内容特性,我们将G-PCC失真归因于两个关键因素:点消失和点位移。点云上的可见障碍通常由个体因素或由两个因素施加的超级因素主导,这取决于原始点云的密度。为此,我们采用了两个不同的模型进行坐标重建,称为坐标扩展并分别攻击点消失和位移点。INADDITION,4- byteauxilaryDensitySinformation在BITSTREAM中发出信号,以帮助选择扩展,协调坐标,坐标,或它们的组合。在被送入坐标重建模块中之前,G-PCC压缩点云首次是由用于多尺度信息融合的特征分析模块处理的,其中基于K NN的变压器在每个尺度上都利用了基于K的变压器,以适应邻域几何学的邻域几何学动力学来有效恢复。以MPEG标准化委员会建议的常见测试条件显着提高了G-PCC锚点,并且在各种点云(例如,实心,密度和稀疏的样品)上的最先进方法均超过了最先进的方法。同时,与现有基于学习的方法相比,GRNET运行速度相当快,并且使用较小的模型,从而使其对行业从业人员有吸引力。
图 3:Mb 中能量转导的分子途径。(a)Mb 的结构,不同坐标根据其 PEF 的大小以不同颜色表示。(b)His93 作为血红素和蛋白质骨架之间的连接器(蓝色原子)。标记了对引导血红素能量至关重要的五个内部坐标。(c)仔细观察血红素面向 Mb 内部和外部的部分的 PEF 差异。(d)通过 !! , ! "(蓝色)和 # ! , # " , # #(红色)的 PEF。
C. 项目位置和背景信息 州:密西西比州 县/教区/自治市镇:麦迪逊县 城市:里奇兰 场地中心坐标(纬度/经度,十进制格式):纬度。32.456606°,经度。-90.174815° 通用横轴墨卡托坐标:15 最近水体名称:Haley Creek 流域名称或水文单元代码 (HUC):03180002
C. 项目位置和背景信息:州:田纳西州县/教区/自治市镇:卢瑟福县城市:拉弗涅场地中心坐标(纬度/经度,十进制格式):纬度 36.005027°,经度 -86.593539°通用横轴墨卡托坐标:16最近水体名称:飓风溪东支流流域名称或水文单元代码 (HUC):051302030304,飓风溪
CMS 坐标测量系统 - 也称为计算机辅助检测 (CAI) 和计算机辅助测量系统 (CAMS)。测量设备,例如坐标测量机 (CMM)、激光跟踪仪和具有检测探头功能的数控机械,用于支持检测活动。(注:所有便携式三维测量系统,包括便携式臂式测量机、计算机辅助经纬仪、激光跟踪仪和摄影测量(包括视频测量)系统,都要求供应商根据本文件第 7.2 节获得批准。