无机氮化物纳米材料因具有新颖的电化学活性和高化学稳定性而在可再生能源应用领域引起了广泛关注。对于不同的可再生能源应用,最佳氮化物相和纳米结构存在许多可能性和不确定性,这进一步促进了氮化物纳米材料的可控制备的探索。此外,与具有块体或陶瓷结构的传统氮化物不同,氮化物纳米材料的合成需要更精确的控制以保证目标纳米结构以及相纯度,这使得整个合成仍然是一个挑战。在这篇小型综述中,我们主要总结了无机氮化物纳米材料的合成方法,包括化学气相沉积、自蔓延高温合成、固相复分解反应、溶剂热合成等。从纳米结构的角度来看,近年来,几种具有纳米多孔、二维、缺陷、三元结构和量子点等纳米结构的新型氮化物表现出独特的性能并受到广泛关注。本文还讨论了功能无机氮化物设计和合成的未来研究前景。
氧化亚铜 (Cu 2 O) 是一种具有大激子结合能的半导体,在光伏和太阳能水分解等应用中具有重要的技术重要性。它还是一种适用于量子光学的优越材料体系,能够观察到一些有趣的现象,例如里德堡激子作为高激发原子态的固态类似物。之前与激子特性相关的实验主要集中在天然块体晶体上,因为生长高质量合成样品存在很大困难。本文介绍了具有优异光学材料质量和极低点缺陷水平的 Cu 2 O 微晶体的生长。本文采用了一种可扩展的热氧化工艺,非常适合在硅上集成,片上波导耦合的 Cu 2 O 微晶体就证明了这一点。此外,还展示了位点控制的 Cu 2 O 微结构中的里德堡激子,这与量子光子学中的应用有关。这项工作为 Cu 2 O 在光电子学中的广泛应用以及新型器件技术的开发铺平了道路。
电化学基因传感器技术的发展与纳米科学一起成为科学界最令人兴奋的领域之一,实验发展受到对新技术应用的迫切需求的推动。开发用于灵敏和特异性检测生物分子的高效电化学基因传感器对于基础生物医学研究和临床诊断都至关重要。由于零维量子点具有优异的性能,例如比高维结构(即块体、量子阱和量子线)具有更高的态密度、[1] 优异的传输和光学特性、[2,3] 异常高的表面体积比、[4] 窄且尺寸可调的发射光谱、多功能表面改性、连续吸收光谱和独特的电化学活性,[5–7] 零维量子点被认为是开发具有高灵敏度、良好特异性和简单性的高效基因传感器的一种有利且有前途的替代方案。这意味着可以用一系列传感元件(如 DNA、肽和抗体)轻松修饰量子点表面,以构建有用的量子点标记探针/传感器。该传感器主要由通过连接器固定在电极上的 QD 组成,因此当受到激发时,
二十世纪初,人们试图理解原子尺度上观察到的各种现象,这导致了量子物理学的形成。这使我们能够理解块体材料的特性如何从其量子起源中产生,随后利用这些特性在二十世纪下半叶产生了半导体、超导体和激光等技术应用。这些应用对社会产生了巨大的影响,如果没有它们,无处不在的电子产品、电脑、手机和互联网将是不可想象的。如今,这一突破被称为第一次量子革命。它一直受到基本设备组件微型化的不断推动和维持。在此过程中,技术发展在二十世纪末达到了这样的阶段,即可以控制和操纵单个量子自由度。从观察到控制的范式转变打开了一扇新的大门,我们利用这种能力可以实现的目标被称为第二次量子革命。其目的是制造新型量子设备,使其功能中充分利用量子特性(例如量子态的叠加、纠缠、压缩和隧穿)。
尽管边缘态是拓扑物理学的基本性质,但直接测量拓扑半金属费米弧的电子和光学特性一直是实验上的重大挑战,因为它们的响应常常被金属块体所淹没。然而,表面态和块体态携带的激光驱动电流可以在非对称晶体中以不同的方向传播,这使得这两个成分很容易分离。受最近理论预测 [1] 的启发,我们测量了在 0.45−1.1eV 入射光子能量范围内源自非对称手性韦尔半金属 RhSi 费米弧的线性和圆形光电效应电流。虽然在研究的能量范围内表面光电流的方向偏离了理论预期,但我们的数据与预测的圆形光电效应光谱形状与光子能量的关系非常吻合。还观察到了由线性光电效应引起的表面电流,出乎意料的结果是只需要六个允许的张量元素中的两个来描述测量值,这表明出现了与晶体空间群不一致的近似镜像对称性。
众所周知,由于电子表面散射,传统金属(如铜)的电阻率在薄膜中会增加,从而限制了金属在纳米级电子器件中的性能。在这里,我们发现在相对较低的 400°C 温度下沉积的磷化铌 (NbP) 半金属中,随着薄膜厚度的降低,电阻率会异常降低。在厚度小于 5 纳米的薄膜中,室温电阻率(1.5 纳米厚的 NbP 约为 34 微欧姆厘米)比我们的块体 NbP 薄膜的电阻率低六倍,并且低于类似厚度的传统金属(通常约为 100 微欧姆厘米)。NbP 薄膜不是晶体,而是在非晶态基质内表现出局部纳米晶体、短程有序。我们的分析表明,较低的有效电阻率是由通过表面通道的传导以及薄膜厚度减小时的高表面载流子密度和足够好的迁移率引起的。这些结果和在此获得的基本见解可以实现超越传统金属限制的超薄、低电阻率纳米电子线。
局域性无疑是量子理论和广义相对论不可分割的一部分。另一方面,像 AdS/CFT 这样的全息理论意味着,在边界理论中,体量子引力自由度被编码在空间无穷远处。尽管这种说法是在非微扰层面上的说法,但在量子引力的微扰极限中,这种性质仍然存在。这主要是由于引力高斯定律,它使我们无法定义严格的局部算子。由于在描述中包含引力要求理论在坐标变换下不变,因此物理算子需要是微分同胚不变的。高斯定律实现的这一条件要求算子被修饰到边界,并包含一个延伸到无穷远处的引力版本的威尔逊线,因此要求它们是非局部的。为了解决这一矛盾,我们提出了候选算子,它们可以绕过这一要求,同时在 AdS/CFT 环境中具有局部和微分同胚不变性。这些算子仍然满足引力高斯定律的一个版本,因为它们被解释为相对于状态的特征进行修饰。因此,这些算子所定义的状态是破坏理论对称性并具有“特征”的状态。这些状态通常是具有大方差的高能状态,对应于块体中非平凡的半经典几何。该提议还将有助于解决有关岛屿提议的悖论。此外,这使得人们能够在微扰量子引力中更具体地讨论子区域、其相关子系统和信息局部化。在第二部分中,我们将主要关注称为 AdS-Rindler 楔形的块体子区域。我们将使用从量子信息和量子计算界借用而来的 Petz 映射,从其边界对偶子区域明确地重建该体子区域。这与先前关于体子区域重建的猜想以及由于引力的量子误差校正性质,Petz 映射可用于重建纠缠楔的提议相一致。此外,我们精确研究了 AdS Rindler 楔中的算子代数,包括体和边界对偶。使用交叉积构造和一种新的重正化 Ryu Takayanagi 表面的方法,我们展示了如何通过包括引力校正将代数修改为更易于管理的代数,我们可以在其中定义密度矩阵和冯诺依曼熵。最后,在存在引力相互作用的情况下,我们研究了一般背景下算子代数的一种特殊表示,称为协变表示。这种表示将从物理角度阐明交叉乘积构造的含义。
9:20 特邀发言人:Dimitri Riabov,查尔姆斯大学,基于激光的不锈钢粉末床熔合。10:00 咖啡 10:30 Ethan Sullivan,KTH。粉末粒度分布和轮廓对电子束粉末床熔合中构建质量的影响。Saman Sharif Hedås、Mattias Jerhamre Engström、Greta Lindwall。10.50 Julia Löfstrand,UU。增材制造 Fe 基块体金属玻璃的工艺开发和磁对比。Inga Goetz、Jithin James Marattukalam、Björgvin Hjörvarsson、Björn Skårman、Petra Jönsson。11:10 Zeyu Lin,KTH。用 PBF-EB 制造的 NiTi 合金的加工窗口。 Sasan Dadbakhsh、Kumar Babu Surreddi、Amir Rashid 11.30 Tatiana Fedina,立陶宛理工大学。激光增材制造中的铁矿石加工。Frank Brueckner、Alexander FH Kaplan 11.50 Lisa Larsson,乌干达理工大学。构建方向和扫描策略对 PBF-LB 生产的可生物降解镁合金机械性能的影响。Tuerdi Maimaitiyili、Francesco D'Elia、Cecilia Persson。12:10 午餐
低温共烧陶瓷技术是生产先进集成压电器件的先决条件,这种器件具有高度紧凑性和超低驱动电压等优点,可用于现代微机电系统。然而,作为最基本的功能电子元件,具有剪切型输出的压电陶瓷结构几十年来从未通过共烧法成功制备成多层形式。平行施加电场和极化技术制造要求在理论上与自然发生的剪切模式中固有的正交取向不相容。在此,受到从相同晶胞构建超材料的理念的启发,设计并制备了一种具有独特图案化电极和阵列式压电陶瓷子单元的人工原型装置,事实证明它可以完美地产生合成面剪切变形。在相同驱动电压下,与之前的 d 15 模式块体元件相比,剪切型位移输出增强了一个数量级以上。基于导波的结构健康监测和力传感的进一步结果证实,该方法消除了艰难的压电技术障碍,并有望从根本上启发集成剪切模式压电装置在增强驱动、传感和传感应用方面的进步。
电子与电气工程实验室 电子与电气工程实验室 (EEEL) 的研究项目涵盖了电气、电子、电磁和光电材料、组件、仪器和系统的几乎所有关键学科,并侧重于计量学。实验室在马里兰州盖瑟斯堡和科罗拉多州博尔德设有实验室;其年度预算约为 8000 万美元。EEEL 的项目涵盖以下领域的测量和相关研究:(1) 基本电气单元;(2) 超导电子学和约瑟夫森结器件、量子霍尔效应器件和单电子隧穿现象的应用;(3) 高临界温度和低临界温度超导体、器件和系统;(4) 磁性材料、块体和薄膜,包括记录介质和磁头;(5) 硅和复合半导体材料、工艺和器件,包括功率器件;(6) 用于纳米级制造控制的测试结构; (7) 光电子学,包括光波通信和传感技术、激光器和光学记录;(8) 微波和毫米波材料、仪器、系统和天线,包括单片微波/毫米波集成电路;(9) 电磁兼容性和干扰,包括辐射和传导,包括电能质量;(10) 射频和微波/毫米波噪声;(11) 电介质材料