PHELIQS 在合成创新块体材料(主要是晶体)和纳米结构(半导体纳米线和量子点、石墨烯单层、高迁移率锗异质结构和其他二维材料)的仪器和方法方面拥有丰富的专业知识。该实验室还拥有用于设备制造的先进洁净室技术。PHELIQS 开发了定制的高性能仪器,用于在极端条件下(低至 10 mK 的低温、大磁场、高压)或需要超高灵敏度(单光子级光学研究、扫描隧道显微镜和光谱、具有任意波生成的 RF 操纵以及单次级反射读数)进行物理测量。此外,PHELIQS 利用其在凝聚态物理学(超导、磁性、强关联电子系统)以及量子和介观物理学方面的强大理论专业知识,在量子凝聚态物理学“计算机辅助”理论新代码开发方面处于领先地位。
在本研究中,我们利用偏振相关角分辨光电子能谱 (ARPES) 研究了六方 MnTe (0001) 块体单晶的电子能带结构。样品通过混合化学计量量的细粉 Mn 和 Te 来制备,并在 10 -5 pa 的真空石英安瓿中密封。我们通过固相反应法生长 MnTe 单晶并将其切割成 (0001) 面。为了获得干净的表面,我们对样品进行了溅射和退火。我们使用 2kV 的束流能量进行溅射,退火温度为 330 摄氏度。通过反复的溅射和退火循环,我们最终得到了干净的表面。通过俄歇电子能谱检查表面的杂质,并通过尖锐的六方低能电子衍射 (LEED) 斑点确认了长程有序。偏振相关 ARPES 实验是在配备 ASTRAIOS 电子分析仪的 HiSOR BL-9A 上进行的。我们将光子能量设置为 40 eV,温度设置为 200K。入射光的偏振方向由波荡器磁铁配置控制。
有机金属卤化物钙钛矿 (OMHP) 是快速、灵敏、大面积光电探测器的有希望的候选材料。在过去十年中,已经开发出几种具有互补优势的技术。薄膜器件很薄,可以扩展到大面积,但具有大量与晶界相关的缺陷。单个块体晶体的纯度更高,但更厚,不易在大面积上生产。在这项工作中,我们介绍了一种微流体辅助技术,可直接在导电图案化基板上实现 OMHP 单晶(微线形式)的受控生长。该技术可以实现具有像素化传感器层的垂直设备。由此产生的设备具有增益、高达 200 AW − 1 的响应度和低至 35 μ s 的快速上升时间。这是首次使用微流体辅助技术在图案化基板上实现 OMHP 垂直设备的演示。
存在于植物和动物体内,具有多种功能。一个基本功能显然是机械功能,为身体提供保护和支持。但生物材料也可以用作离子储存器(骨骼是一个典型的例子)、化学屏障(如细胞膜)、具有催化功能(如酶)、将化学物质转化为动能(如肌肉)等。本篇评论文章将重点关注主要(被动)具有机械功能的材料:纤维素组织(如木材)、胶原组织(如肌腱或角膜)、矿化组织(如骨骼、牙本质和玻璃海绵)。主要目标是介绍这些材料结构的当前知识以及这些结构与它们(主要是机械)功能的关系。本文不会讨论具有主动机械功能的肌肉,也不会讨论流体流动(例如血液循环)、摩擦和摩擦学(例如关节)或连接(例如昆虫的附着系统)等领域,尽管它们与力学有明显的关系。因此,对自然的看法将非常类似于对(块体)结构材料感兴趣的材料科学家的看法。
• 在各种各样的岩土工程条件下(均质或混合面、破碎岩体、软土地基等),以及在所有钻孔方法(传统隧道掘进、开放式盾构、土压平衡或泥水盾构)都可能发生面不稳定, • 在地下,所涉及的体积可以从几立方分米(局部不稳定)到几百立方米(影响整个前缘甚至覆盖层)的整体不稳定, • 机制的形状取决于地面的性质:由岩石中预先存在的不连续性界定的块体、粉状地面中靠近面局部的机制(向地面逐渐演化)和粘性粘土地面中体积更大的机制, • 因部分或不当控制面稳定性而引起的不稳定性可能会在时间和空间上延迟影响到地面, • 面不稳定的后果变化很大,从“几乎可以忽略不计”到“非常严重”(延迟可达几个月)不等个月)或巨大的额外成本(高达数百万欧元),以及人员伤亡(因为地下工人面临风险)。
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高约 10%。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高出 150%。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,通过将声子传输到原生非晶态 SiO 2 壳层来实现相关。这项工作发现了迄今为止报道的所有材料中室温下 κ 的最强同位素效应,并启发了同位素富集半导体在微电子领域的潜在应用。
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高 ∼ 10 %。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高 150 %。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,并通过声子传输到原生非晶态 SiO 2 壳层而相关。该信发现了迄今为止报道的所有材料中室温下κ同位素效应最强的材料,并启发了同位素富集半导体在微电子领域的潜在应用。
层状过渡金属二硫属化物 (TMDC) 具有各种电子、结构和传输现象,是电子器件中最有希望的应用材料 [1, 2]。在众多新状态中,这些化合物中的电荷密度波 (CDW) 相尤其受到关注,因为它在相图中与超导相邻 [3, 4]。就电子结构而言,CDW 相通常与费米面嵌套相关,费米面特定位置的间隙打开,由 CDW 波矢连接 [5–7]。作为响应,原子从其原来的位置移动,形成可通过扫描隧道电子显微镜 (STM) 实验可视化的超结构 [8–10]。在所有 TMDC 中,1T-VSe 2 是一个特殊的例子,因为它在块体中具有长波长 3D CDW 相。它经历与 4 a × 4 a × 3 不相称的 CDW。 18c 在 T ∗ = 110 K 附近出现周期性晶格畸变,随后在 80 K 附近第二次跃迁至相应的 CDW 态 [9–11]。另一方面,电子结构上的 CDW 相得到了角分辨光电子能谱 (ARPES) 的异常研究支持。例如,据报道在
原子级厚度的二维 (2D) 过渡金属二硫属化物 (TMD) 超导体能够实现均匀、平坦和干净的范德华隧穿界面,这促使它们被集成到传统的超导电路中。然而,必须在 2D 材料和三维 (3D) 超导体之间建立完全超导接触,才能在这种电路中采用标准微波驱动和量子比特读出。我们提出了一种在 2D NbSe 2 和 3D 铝之间创建零电阻接触的方法,这种接触表现为约瑟夫森结 (JJ),与 3D-3D JJ 相比具有更大的有效面积。由 2D TMD 超导体形成的器件受到薄片本身的几何形状以及与块体 3D 超导引线的接触位置的强烈影响。我们通过金兹堡-朗道方程的数值解提出了 2D-3D 超导结构中超电流流动的模型,并与实验结果非常吻合。这些结果表明我们向新一代混合超导量子电路迈出了关键一步。
摘要 材料科学领域为应对现代社会可持续发展的挑战提供了巨大的机遇。本综述关注的材料科学分支学科是纳米材料科学和纳米技术。纳米材料的外部尺寸为 1-100 纳米。相同质量下,纳米材料的表面积比块体材料大。纳米材料的反应性更强,电学、光学和磁性质也受到影响。因此,纳米材料有望在能源、水资源、化学品、电子、医疗和制药工业、二氧化碳减排和农业等领域实现可持续发展。为此,本综述探讨了纳米材料科学和纳米技术的进展以及纳米材料在可持续发展中的潜在应用。本综述检索了 73 篇同行评审文章和摘要。本综述考虑了碳纳米材料、无机材料、半导体、聚合物和脂质基材料。研究发现,纳米材料科学和纳米技术在环境修复、能源、食品、农业、工业、分子生物学、医学和制药工业等领域具有潜在的应用前景,有助于可持续发展。关键词:纳米材料科学、纳米技术、可持续发展。引言