各种应用(例如太空应用)对高功率密度、高效率电子设备的需求日益增加。高功率密度要求在封装层面进行有效的热管理,以确保工作温度保持在安全的工作范围内,避免设备早期故障。芯片粘接(芯片和法兰之间的粘合层)一直是热瓶颈,依赖于导热率相对较低的共晶焊料。正在开发先进的高导热率芯片粘接材料,包括烧结银和银环氧树脂,以解决这一问题。然而,这些新材料的热导率通常以其块体形式进行评估;体积热导率可能无法代表实际应用中较低的实际“有效”热导率,这也受到界面和空隙的影响。在本文中,频域热反射已调整为在低频下运行,具有深度灵敏度,可测量夹在芯片和法兰之间的芯片粘接层的热导率。
理解强自旋轨道耦合的窄带半导体中自旋极化载流子弛豫的基本散射过程,对于自旋电子学的未来应用至关重要。[1–8] 一个核心挑战是利用自旋轨道相互作用,在没有外部磁场的情况下实现高效的信息处理和存储。[6–12] 当表面或界面发生反转不对称时,或当自旋轨道相互作用存在于块体中时,可引起较大的拉什巴效应。[13–17] 结果,电子态的自旋简并度被提升,其自旋分裂变为 Δ E = 2 α R | k |,它一级线性依赖于动量| k |和拉什巴效应的强度,用所谓的拉什巴参数 α R 表示。 [18,19] 较大的 Rashba 效应被认为是实现增强自旋极化电流控制、[20,21] 高效自旋注入 [10,22] 和自旋电荷相互转换、[23–26] 较大自旋轨道扭矩、[5,27] 的关键。
在本文中,我们研究了 3D 打印聚合物复合材料在经历大变形时的失效行为。将实验结果与使用具有能量阈值和有效平面应力公式的相场断裂法的数值模拟进行了比较。将开发的框架应用于由嵌入软基质中的三个刚性圆形夹杂物组成的复合系统。特别是,我们研究了几何参数(例如夹杂物之间的距离和初始缺口的长度)如何影响软复合材料的失效模式。我们观察到复杂的失效序列,包括块体材料中的裂纹停止和二次裂纹萌生。值得注意的是,我们的数值模拟捕捉到了复合材料失效行为的这些基本特征,数值结果与实验结果高度一致。我们发现复合材料的性能(强度和韧性)可以通过选择夹杂物的位置来调整。然而,我们报告称,最佳夹杂物间距并不是唯一的,还取决于初始缺口长度。这些发现为设计性能增强的软复合材料提供了有用的见解。
然而,超导体中的二极管效应可能由几种不同的机制引起,具体取决于器件的成分和结构。几个研究小组已经研究了 SDE 理论。例如,通过使用平均场、Bogoliubov-de Gennes (BdG) 和 Ginzburg-Landau 理论,最近提出了无结块体超导体中的 SDE 以及其约瑟夫森结版本的理论见解。然而,另一个重要概念是邻近耦合,其中约瑟夫森结是在高自旋轨道耦合材料之上制造的;在这里,反演对称性不仅被器件的异质成分破坏,还被自旋轨道耦合项破坏;在这里,破坏 TRS 所需的磁场位于器件平面内。近年来,自旋轨道耦合非中心对称超导体中 SDE 的有趣实验演示已经复兴并刺激了非互易超电流传输的理论研究。然而,SDE 的想法已经存在了几十年。
PHELIQS 在创新块体材料(主要是晶体)和纳米结构(半导体纳米线和量子点、石墨烯单层、高迁移率锗异质结构和其他二维材料)合成的仪器和方法方面拥有丰富的专业知识。该实验室还拥有用于设备制造的先进洁净室技术。PHELIQS 开发了定制的高性能仪器,用于极端条件下的物理测量(低至 10 mK 的低温、大磁场、高压)或需要超高灵敏度(单光子级光学研究、扫描隧道显微镜和光谱、具有任意波生成的 RF 操纵以及单次级反射读数)。PHELIQS 还利用其在凝聚态物理(超导性、磁性、强关联电子系统)以及量子和介观物理方面的强大理论专业知识,并处于量子凝聚态物理“计算机辅助”理论新代码开发的最前沿。
随着现代材料应用(例如微电子、传感器、执行器和医疗植入物)的尺寸不断减小,量化材料参数变得越来越具有挑战性。具体而言,解决系统的各个组成部分(例如多层结构中的界面或埋层)成为一个重要课题。本文展示了一种基于扫描电子显微镜中的原位微悬臂测试来评估 Cu-WTi-SiO x -Si 模型系统不同界面的断裂参数的技术。相对于感兴趣的界面定位初始缺口位置可以选择不同的裂纹路径,而额外叠加的正弦信号允许连续测量刚度变化,从而对实际裂纹扩展进行实验测量。因此,我们对 Cu 和 WTi 之间的界面、块体 WTi 以及 WTi 和 SiO x 之间的界面实现了连续的 J-D 曲线测量。这种新方法的局部性质使其普遍适用于测试特定界面。
5 帕多瓦大学化学科学系,Via Marzolo 1, 35131 帕多瓦,意大利 * 通讯作者:plinio@uniss.it 关键词:六方氮化硼,二维材料,光致发光 摘要 基于六方氮化硼纳米片(h-BNN)的功能光电应用的开发依赖于控制结构缺陷。特别是,已经观察到荧光发射取决于空位和取代缺陷。在目前的研究中,通过超声辅助液相剥离块体对应物获得了少层 h-BNN。制备的样品在可见光范围内表现出微弱的荧光发射,中心在 400nm 左右。通过在不同温度下在空气中氧化引入了定制缺陷。已经观察到氧化 h-BNN 的荧光发射显著增加,在 300°C 下处理的样品的发射强度最大。温度进一步升高(>300°C)会导致荧光猝灭。
近年来,研究人员越来越多地探索二维 (2D) 电子级材料,以将其用于半导体器件。二维材料由单层、原子厚的晶体结构组成,具有独特的性质。它们不再遵循块体材料的自然物理定律,而是受量子定律支配。它们表现出广泛有用的电气、机械和光学特性,具有革命性的巨大潜力,可以彻底改变下一代电子设备:提供纳米级集成、超高速运行和低功耗。几十年来,人们一直认为二维材料不表现出铁磁性。然而,在 2017 年,科学家发现两种二维材料——碘化铬和 CGT (Cr 2 Ge 2 Te 6 )——本质上是铁磁性的。他们的研究为探索各种磁性材料(如铁磁性、半磁性和顺磁性)开辟了新的可能性。所有这些材料都有可能用作电子级材料。从那时起,几种二维材料被理论化并归入这一类别。
摘要:据报道,内嵌铝化物 RuAl 6 具有超导性,其 T c = 1.21 K。T c 处的归一化热容量跃变 Δ C/ γ T c = 1.58,证实了块体超导性。金兹堡-朗道参数 κ = 9.5 表明 RuAl 6 为 II 型超导体。与其结构类似物 ReAl 6(T c = 0.74 K)相比,探讨了 RuAl 6 的电子结构计算。根据晶体轨道哈密顿布居(- COHP)分析讨论了相的稳定性。两种材料 T c 的差异是由 RuAl 6 中发现的明显更强的电子-声子耦合引起的,这是反键相互作用明显更强的结果。另一种由铝团簇组成的化合物中超导性的出现可能扩大了临界温度与 Ga 团簇所示结构的相关性。■ 简介
摘要:非线性块体晶体中的反向传播参量转换过程已被证明具有独特的特性,可实现高效的窄带频率转换。在量子光学中,在波导中通过反向传播参量下转换过程 (PDC) 生成光子对,其中信号光子和闲置光子以相反的方向传播,提供了独特的与材料无关的工程能力。然而,实现反向传播 PDC 需要具有极短极化周期的准相位匹配 (QPM)。在这里,我们报告了在自制的周期性极化铌酸锂波导中生成反向传播单光子对,其极化周期与生成的波长在同一数量级。双光子状态的单光子以可分离的联合时间光谱行为桥接 GHz 和 THz 带宽。此外,它们允许使用最先进的光子计数器直接观察预示单光子的时间包络。