202. 3) Wang, JY, Tuck, OT, Skopintsev, P., Soczek, KM, Li, G., Al-Shayeb, B., Zhou, J., & Doudna, JA (2023) 通过 CRISPR 修剪器整合酶进行基因组扩展。Nature,618,855 ‒ 861。4) Wang, JY, Pausch, P., & Doudna, JA (2022) CRISPR-Cas 免疫和基因组编辑酶的结构生物学。Nat. Rev. Microbiol. , 20 , 641 ‒ 656。5) Anzalone, AV、Randolph, PB、Davis, JR、Sousa, AA、Ko-blan, LW、Levy, JM、Chen, PJ、Wilson, C.、Newby, GA、Raguram, A. 等人 (2019) 无需双链断裂或供体 DNA 的搜索和替换基因组编辑。Nature,576,149 ‒ 157。6) Mehta, J. (2021) CRISPR-Cas9 基因编辑用于治疗镰状细胞病和β地中海贫血。N. Engl. J. Med.,384,e91。 7) Kapitonov, VV, Makarova, KS, & Koonin, EV (2015) ISC,一组编码 Cas9 同源物的新型细菌和古细菌 DNA 转座子。J. Bacteriol. ,198,797 ‒ 807。8) Altae-Tran, H., Kannan, S., Demircioglu, FE, Oshiro, R., Nety, SP, McKay, LJ, Dlakić, M., Inskeep, WP, Makarova, KS, Macrae, RK, et al. (2021) 广泛分布的 IS200/IS605 转座子家族编码多种可编程的 RNA 引导的核酸内切酶。 Science , 374 , 57 œ 65。9) Weinberg, Z., Perreault, J., Meyer, MM, & Breaker, RR (2009) 细菌宏基因组分析揭示的特殊结构化非编码 RNA。Nature , 462 , 656 œ 659。10) Hirano, S., Kappel, K., Altae-Tran, H., Faure, G., Wilkinson, ME, Kannan, S., Demircioglu, FE, Yan, R., Shiozaki, M., Yu, Z., et al. (2022) OMEGA 切口酶 IsrB 与 ω RNA 和靶 DNA 复合的结构。 Nature , 610 , 575 œ 581。11) Biou, V., Shu, F., 和 Ramakrishnan, V. (1995) X 射线晶体学显示翻译起始因子 IF3 由两个通过 α 螺旋连接的紧凑的 α/β 结构域组成。EMBO J. , 14 , 4056 œ 4064。12) Schuler, G., Hu, C., 和 Ke, A. (2022) IscB-ω RNA 进行 RNA 引导的 DNA 切割的结构基础以及与 Cas9 的机制比较。 Science,376,1476 ‒ 1481。13) Bravo, JPK、Liu, MS、Hibshman, GN、Dangerfield, TL、Jung, K.、McCool, RS、Johnson, KA 和 Taylor, DW (2022) CRISPR-Cas9 错配监测的结构基础。Nature,603,343 ‒ 347。14) Aliaga Goltsman, DS、Alexander, LM、Lin, JL、Fregoso Ocampo, R.、Freeman, B.、Lamothe, RC、Perez Rivas, A.、Temoche-Diaz, MM、Chadha, S.、Nordenfelt, N. 等人 (2022) 从未培养的微生物中发现用于基因组编辑的紧凑型 Cas9d 和 HEARO 酶。Nat. Commun. ,13,7602。
(1)(Kokuken)日本科学技术局研究与发展战略中心,“战略建议:每个人的量子计算机”,2018年。 https:// wwwjst.go.jp/crds/pdf/2018/sp/crds-fy2018-sp-04.pdf(2)p.w.Shor,“用于量子计算的算法:离散日志和保理”,Proc第35届IEEE计算机科学序言研讨会,第124-134页,1994年。(3)L.K.Grover,“用于数据库搜索的快速量子机械算法”,第28 ACM计算理论座谈会论文集,第212-219页,1996年。(4)N。Kunihiro,“代理量计算机的计算时间的精确分析”,IEice Trans基础,第88-A卷,第105–111页,2005年。(5)M.A。nielsen和I.L.chuang,量子计算和量子信息,剑桥大学出版社,2000年。(6)A。Peruzzo,J。McClean,P。Shadbolt,M.-H周,P.J。Love,A。Aspuru-Guzik和J.L.O'Brien,“光子量子处理器上的变异特征值求解器”,《自然通信》,第5卷,第1期,2014年7月,第4213页(7)to奥利T.可逆计算,在:de bakker J.,van leeuwen J.(eds)自动机,语言和程序 - iCalp 1980,计算机Sci-Ence中的讲义,第85卷,Springer,柏林(8)Arxiv e-Prints,Quant-PH/9902 062,1999年2月。(9)K。Iwama,S。Yamashita和Y. Kambayashi,“设计基于CNOT的量子CUITS的跨形成规则”,设计自动化会议,第419-429-2002页,2002年。(10)Z. Sasanian和D.M.(12)M。Soeken,M。Roetteler,N。Wiebe和G.D. Micheli,“基于LUT的层次可逆逻辑Synthe-Sis”,IEEE TransMiller,“可逆和Quan-Tum电路优化:一种功能性方法”,《可使用的计算》第4个国际研讨会(RC 2012),第112-124页,2013年。((11)A。Mishchenko和M. Perkowski,“快速的启发式启发式最小化 - 独家及产品或产品”,第五届国际式Reed-Muller Workshop,pp.242–250,2001。计算。集成。电路系统,第38卷,第9期,第1675–1688页,2019年。((13)E。Souma和S. Yamashita,“同时分解许多MPMCT大门时,减少T计数”,第50届国际多重逻辑国际研讨会(IS- MVL 2020),第22-22-27页,11月2020年,((14)X. Zhou,D.W。 Leung和I.L.Chuang,“量子逻辑门结构的方法论”,物理。 修订版 A,第62卷,052316,2000年10月。 ((15)A。Barenco,C.H。 Bennett,R。Cleve,D.P。 Divincenzo,Chuang,“量子逻辑门结构的方法论”,物理。修订版A,第62卷,052316,2000年10月。((15)A。Barenco,C.H。Bennett,R。Cleve,D.P。 Divincenzo,Bennett,R。Cleve,D.P。Divincenzo,
获得纳米级光发射器的响应均匀性对于它们在传感和成像剂以及发光二极管 (LED)、激光器等中的光子源中的应用至关重要。在低维纳米发射器(包括胶体和外延量子点 1、2、2D 过渡金属二硫属化物 3 – 6、六方氮化硼 7 和单壁碳纳米管 (SWCNT) 8 – 12 )作为量子计量和量子信息处理 13 的单光子源的新兴角色的背景下,需要对允许的发射能量变化进行更严格的限制,最终目标是实现光子不可区分性。在这些用于量子发射的多样化材料平台中,SWCNT 提供了多种优势,这些优势源于能够通过化学操控控制光发射特性。由于 SWCNT 发射能量对特定纳米管结构(用手性指数 (n,m) 表示,图1)14 具有很强的依赖性,因此其发射能量具有广泛的可调性。对非共价结合包裹剂(如表面活性剂、聚合物和 DNA)表面结构的化学控制为高产率、高纯度分离特定 SWCNT 结构提供了高效途径,从而对发射特性具有显著的选择性 15 。这种表面化学还提供了一种控制周围环境以优化光致发光的途径。最近通过低水平共价功能化引入光致发光缺陷态扩展了 SWCNT 发射行为,为发射特性提供了额外的合成可调性并赋予了量子发射功能,同时也充当了光谱多样性的来源。
基于前期开发的功能性高分子生物材料构建了一系列可注射水凝胶体系,包括基 于 “ thiol-ene ” 点击化学反应构建的超支化聚合物/巯基功能化细胞外基质材料交 联水凝胶体系【Acta Biomaterialia 2018, 75, 63; Biomater.Sci.2021, 9, 4139】、基于动态共价化学交联的自愈合可注射水凝胶体系【ACS Appl.Mater.Interfaces 2020, 12, 38918; Applied Materials Today 2021, 22, 100967】 以及基于离子交联和氢键作用的双网络水凝胶体系【Adv.Funct.Mater.2024, 2313322】。创建的超支化聚合物与巯基功能化透明质酸/硫酸软骨素水凝胶可结 合干细胞作为复合型组织修复材料,在创面愈合以及软骨修复方面展现出了显着 的组织再生效果。开发的基于席夫碱动态化学交联水凝胶具有良好的可注射性、 自愈合性以及组织粘附性,在生物3D 打印以及软组织粘附生物胶水方面展现出了 优越的应用前景。