a 意大利帕多瓦大学医学系 - DIMED b 意大利帕多瓦帕多瓦大学医院病理学系 c 意大利特雷维索 Marca Trevigiana ULSS2 医院病理学系 d 意大利帕多瓦威尼托肿瘤研究所 IOV-IRCCS e 意大利帕多瓦帕多瓦大学医院外科、肿瘤学和胃肠病学系(DiSCOG)普通外科 3 f 意大利维罗纳大学与医院信托病理学科诊断与公共卫生系 g 意大利热那亚大学外科科学与综合诊断学系(DISC)解剖病理学 h 意大利热那亚 IRCCS Ospedale Policlinico San Martino,意大利热那亚大学外科科学与综合诊断学系(DISC) i 病理学研究单位,Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, 福贾, 意大利
简介:自由放养的白尾鹿(Odocoileus virginianus)是位于密歇根州东北部(美国)的牛结核病(BTB)的自我维持的水库,(美国)不断使该地区的牛业陷入困境。自由娱乐鹿的收获,诱饵禁令和农场的缓解措施减少了但没有消除鹿的BTB,也没有消除向牛的传播。鹿的明显患病率很低(1-2%),但恒定,疫苗接种可能是帮助解决该问题和值得研究的附加工具。结核分枝杆菌Calmette-guérin(BCG)疫苗是一种广泛使用的人类疫苗用于结核病,在家庭牲畜和野生动植物中也接受了很好的研究。它是主要的疫苗候选者,口服输送是将其交付给自由放养鹿的逻辑手段,尽管以前从未尝试过。
由于 PARP 抑制剂能够特异性地杀死无法通过同源重组修复 DNA 的肿瘤,因此聚(ADP - 核糖)聚合酶 1 (PARP1) 已成为癌症治疗的中心靶点。DNA 损伤后,PARP1 会迅速与 DNA 断裂结合并触发 ADP - 核糖基化信号。ADP - 核糖基化对于将各种因子募集到损伤部位以及及时将 PARP1 从 DNA 断裂中分离非常重要。事实上,在 PARP 抑制剂存在的情况下,PARP1 会被困在 DNA 断裂处,这是这些抑制剂细胞毒性的潜在机制。因此,任何影响捕获的细胞过程都被认为会影响 PARP 抑制剂的效率,可能导致接受这些药物治疗的患者产生获得性耐药性。DNA 损伤后有许多 ADP - 核糖基化靶点,包括 PARP1 本身以及组蛋白。虽然最近的研究报告称 PARP1 的自我修饰会促进其从 DNA 损伤中释放,但其他 ADP - 核糖基化蛋白对这一过程的潜在影响仍不清楚。本文,我们证明组蛋白 ADP - 核糖基化对于 PARP1 从损伤中及时消散也至关重要,从而导致细胞对 PARP 抑制剂产生耐药性。考虑到 ADP - 核糖基化与其他组蛋白标记之间的串扰,我们的研究结果为开发更有效的 PARP 抑制剂驱动的癌症疗法开辟了有趣的前景。
*通讯作者。j.h.veldink@umcutrecht.nl。†这些作者作为首位作者也同样为这项工作做出了贡献。‡这些作者同样为这项工作做出了同样的贡献,因为共同作者§A作者名单及其隶属关系出现在本文的末尾。作者贡献:样本确定和数据生成由P.J.H.,R.A.J.Z.,E.H.,G.L.S.,M.F.N.,E.M.W.,W.V.R.,J.J.J.J.F.A.V.V.V.V.V.V. N.T. P.A.M.,M.N.,G.N.,D.B.R.,R.P.,K.A.M. M.P.,M.D.C.,S.P.,M.W.,G.R.,V.S.,J.E.L.,C.E.S.,P.M.A.,A.F.M.,M.A.V.E.wgs由P.J.H.,R.A.J.Z.,W.V.R.,J.J.F.A.V.V.V.,A.M.D.,G.H.P.T.,K.R.V.E.WGS质量控制是由P.J.H.,R.A.J.Z.,W.V.R.,J.J.F.A.V.V.,M.M.,K.P.K.,P.V.D。和J.H.V.数据分析是由P.J.H.,R.A.J.Z.,E.H.,J.M。和J.H.V.进行的。手稿的写作是由P.J.H.,R.A.J.Z.,J.M。和J.H.V.完成的。修订手稿由P.J.H.,R.A.J.Z.,M.F.N.,W.V.R.,J.J.J.F.A.V.V.V.,H.-J.W.,D.B.,R.J.P.,R.J.P.,R.J.P.,N.R.W.
摘要背景:局部晚期乳腺癌是对新辅助化学疗法(NACT)和生存的反应。目前无法准确预测谁将从特定类型的NACT中受益。DNA甲基化是一种表观遗传机制,已知在调节基因表达中起重要作用,并且可以作为治疗反应和生存的生物标志物。我们调查了DNA甲基化作为乳腺癌NACT后长期生存(> 5年)的预后标记的潜在作用。方法:使用Illumina Human-Methylation 450 Beadchip研究了来自83例局部晚期乳腺癌女性的83名局部晚期乳腺癌女性的DNA甲基化谱(n = 55)和治疗后(n = 75)活检。患者接受了硬纤维素和/或紫杉醇的新辅助治疗。线性混合模型分别基于对NACT(部分反应或稳定疾病)和5年生存的临床反应,将DNA甲基化与治疗反应和生存相关。进行了基于统计学意义的甲基化位点来确定风险评分,并使用Kaplan-Meier曲线分析使用十年的生存后续数据来估算生存率。我们发现队列中发展的风险评分在独立验证队列中得到了验证,该验证队列由来自85名局部晚期乳腺癌女性的配对前治疗和治疗后活检组成。验证队列中包括的患者用阿霉素或5-FU和丝裂霉素NACT治疗。验证队列中包括的患者用阿霉素或5-FU和丝裂霉素NACT治疗。结果:在5年幸存者的NACT中,DNA甲基化模式在非生存者中没有发生变化,而在非生存者中未观察到显着变化或与治疗反应有关。DNA甲基化的变化包括CPG岛上甲基化的总体丧失以及非CPG岛中甲基化的增益,这些变化影响了与转录因子活性,细胞粘附和免疫功能相关的基因。基于四个甲基化位点开发了风险评分,这些甲基化位点成功地预测了我们的队列中的长期生存(p = 0.0034)和不可用验证的同类群体(p = 0.049)。
抽象分子模拟扩展了我们学习生物分子相互作用的能力。由具有不同理化特性的不同脂质组成的生物膜是参与细胞功能的高度动态环境。蛋白质,核酸,聚糖和生物兼容的聚合物是细胞质和脂质膜界面中细胞过程的机械。脂质物种直接调节膜特性,并影响其他生物分子的相互作用和功能。天然分子扩散会导致局部脂质分布的变化,从而影响膜特性。将生物物理和结构膜和生物聚合物的特性投射到二维平面可能是有益的,可以在降低的尺寸空间中量化分子特征,以识别感兴趣界面的相关相互作用,即膜表面或生物聚合物表面接口。在这里,我们提出了一个工具箱,旨在将膜和生物聚合物特性投射到二维平面上,以表征脂质 - 脂质与脂质聚合物接口之间的相互作用模式和空间相关模式。该工具箱包含两个使用MDakits体系结构实施的枢纽,一个用于膜,一个用于生物聚合物,可以独立或一起使用。三个案例研究证明了工具箱在GitHub中具有详细教程的多功能性。该工具箱和教程将定期更新其他功能和决议,以扩展我们对生物分子在二维中的结构 - 功能关系的理解。
大麻在全球范围内广泛使用,但其与健康结果的联系尚未完全了解。DNA甲基化可以作为将环境暴露与健康结果联系起来的介体。我们在荟萃分析中进行了一项对周围性基因组的关联研究(EWA)(EWAS),其中包括9436名参与者(7795名欧洲和1641名非洲祖先),对七个同类的荟萃分析进行了基于外周的DNA甲基化和终生使用大麻的使用(vs.从未)。考虑了吸烟的影响,我们的跨性ewas荟萃分析显示,以0.05 p <5:85 ´107Þ的虚假发现率,与终身大麻的使用显着相关的CPG站点显着相关ACTN1和CG01101459在Linc01132附近。此外,我们在从未抽烟的参与者中进行的EWA分析,这些香烟识别出另一个遍及均质的CPG位点,CG14237301注释给APOBR。,我们使用了一项淘汰方法来评估构成的甲基化评分,该评分是构建的,是CPGS的加权总和。最佳模型可以解释使用寿命大麻的3.79%。这些发现揭示了与寿命使用大麻相关的DNA甲基化变化,这些变化与吸烟无关,并且可以作为进一步研究大麻暴露会影响健康结果的机制的起点。
帕金森人与疾病相关的DNA甲基化和羟甲基化改变了人脑大脑Juliana I. Choza,Ba* 1,Mahek Virani,Ba* 1,Nathan C. Kuhn,Nathan C. Kuhn,BS 3,BS 3,Marie Adams,MS 4,MS 4,Joseph Kochmanski,Joseph Kochmanski,Phd 3,phd 3,Phd I.Berson I.Bern and phd I.Bern of phd I.Bern of phd。毒理学,欧内斯特·马里奥(Ernest Mario),罗格斯大学(Rutgers University),皮斯卡塔维(Piscataway),新泽西州2 2环境与职业健康科学研究所,罗格斯大学(Rutgers University),皮斯卡塔威(Piscataway Bernstein,Bernstein.alison@rutgers.Edu环境与职业健康科学研究所Ernest Mario药学院,Rutgers University,170 Freylinghuysen Rd Piscataway,NJ 08854 orcid orcid IDS JULIANA I.CHOZA I. CHOZA I. CHOZA:0000-0001-701-7038-98-98-97550 MAHEKINI:VIRANANI:VIRANANI。 0009-0006-6094-4478玛丽·亚当斯(Marie Adams):0000-0001-7909-2339 Joseph Kochmanski:0000-0002-8472-3032 Alison I.Bernstein:000000-0002-5589-431-4318
图3:这无疑是本文中最重要的信息之一。i认识到糖基化总体上受到影响,但在这个水平上,通过质谱来深入分析患者细胞的N-糖基化状态至关重要,以了解这种缺陷,戈尔吉帕蒂和糖基化之间的联系。作者使用WGA确认其糖基化缺陷。我会建议他们重复SNA和MAA的实验,这些实验是更具体的凝集蛋白。作者检测到apociii糖基化缺陷,而在转铁蛋白中无。在O-Glycans上发生的溶苷位在Alpha 2,3中,而对于N-Glycans,这主要是Alpha 2,6。缺陷可能只会影响α2,3溶性。使用两个凝集素SNA和MAA的使用应回答这个问题,但这就是为什么通过质谱法中患者细胞的N-糖基化状态很重要。这也可以在本文第二部分中使用的RPE突变细胞中完成。
DNA 甲基化 (DNAme) 是一种关键的表观遗传标记,可调节维持整体基因组稳定性的关键生物过程。鉴于其多效性功能,对 DNAme 动力学的研究至关重要,但目前可用的干扰 DNAme 的工具存在局限性和严重的细胞毒性副作用。在这里,我们提出了允许通过 DNMT1 耗竭进行可诱导和可逆 DNAme 调节的细胞模型。通过动态评估通过细胞分裂诱导的被动去甲基化的全基因组和位点特异性效应,我们揭示了 DNMT1 和 DNMT3B 之间的协同活动,但不是 DNMT3A,以维持和控制 DNAme。我们表明,DNAme 的逐渐丧失伴随着异染色质、区室化和外周定位的逐渐和可逆变化。DNA 甲基化丧失与由于 G1 停滞而导致的细胞适应性逐渐降低相吻合,并伴有轻微的有丝分裂失败。总之,该系统可以进行具有精细时间分辨率的 DNMT 和 DNA 甲基化研究,这可能有助于揭示 DNAme 功能障碍与人类疾病之间的病因联系。