摘要 逆转座子是一类可移动的遗传元件,能够通过逆转录 RNA 中间体进行转座。水稻品种日本晴在第 7 号染色体上(Tos17 Chr.7)和第 10 号染色体上(Tos17 Chr.10)含有两个几乎相同的 Tos17 基因组拷贝,Tos17 是一个内源的 copia 样 LTR 逆转座子。前期研究表明,在组织培养过程中,只有 Tos17 Chr.7 具有转座活性。Tos17 Chr.7 已被广泛用于插入诱变,作为水稻基因功能分析的工具。然而,在水稻转化过程中,Tos17 Chr.7 转座可能会产生具有不良性状的体细胞突变,从而影响转基因的评估或应用。本研究利用 CRISPR/Cas9 基因编辑系统构建了一个 Tos17 Chr.7 敲除突变体 D873。 Tos17 Chr.7 在D873上的基因编辑等位基因被命名为Tos17 D873 ,该基因在Tos17 Chr.7的pol基因上有一个873bp的DNA缺失,从而导致GAG-整合酶前结构域和整合酶核心结构域的缺失。虽然Tos17 D873的转录在D873愈伤组织中被激活,但在再生的D873植株中没有检测到Tos17 D873的转座。结果表明GAG-整合酶前结构域和整合酶核心结构域是Tos17 Chr.7转座所必需的,且这两个结构域的缺失不能被水稻基因组中的其他LTR逆转录转座子补充。由于 Tos17 Chr.7 衍生的体细胞克隆诱变在 D873 植物中被阻断,因此 Tos17 D873 等位基因的产生将有助于生产转基因水稻植物,以进行基因功能研究和遗传工程。类似的方法可用于在作物育种中失活其他逆转录转座子。
xanthomonas citri subsp。柑橘是柑橘溃疡的因果毒剂,近年来已被视为农业浸润的新型载体。XCC-辅助农业渗透提供了几种优势XCC在将DNA输送到植物细胞中的效率非常有效,从而导致快速且稳健的基因表达。XCC可用于多种植物物种,包括丁香和单子叶植物,使其成为植物生物学家的多功能工具。与涉及植物组织伤口的传统农业浸润方法不同,XCC促成的农业浸润是微创的,可减少潜在的组织损害和对植物的压力。使用XCC促进的农业浸润引入的基因通常会瞬时表达,这允许快速测试基因功能,而无需永久改变植物的基因组[2]。
1个国家 - 本地联合工程实验室,可药品和新药物评估,国家工程研究中心,新药和药物可药用性研究中心,广东省新药设计与评估的关键省份,制药学院,桑尼亚特大学,桑尼亚特大学,中国广州,中国广州; 2 MOE基因功能与法规的主要实验室,中国广州孙子森大学生命科学学院; 3病理学系,中国广州孙子森大学的第一届Affimied Hospital; 4胃肠道手术系,中国广州的孙子森大学的第一届Affimied Hospital; 5加利福尼亚州洛杉矶的南加州大学凯克医学院医学系;和第六个结直肠外科,中国广州的孙子森大学的第六次后期医院
- 解释现代遗传学的发展方式以及它如何影响现代医学,农业和进化,以了解如何将科学方法应用于生物学问题。- 在减数分裂的染色体行为方面解释遗传比率,能够基于修改后的孟德尔比率来推断不同基因的遗传相互作用。- 对测试杂交的定量分析,以评估多个基因的遗传连锁和映射。- 预测各种突变对基因功能的影响提出了合理的假设,以解释分子水平上的优势和隐性表型。- 解释并区分DNA复制和修复,转录和蛋白质翻译的关键特征,包括涉及的细胞成分,在原核生物和真核生物中都可以了解基因的功能。- 对用于分析DNA,RNA和蛋白质的各种分子遗传学方法的知识,以证明如何使用这些分子技术来理解基因功能。
包含机密商业信息 尊敬的副局长 Juarez, CoverCress Inc. (CCI) 谨请求美国农业部动植物卫生检验局生物技术监管服务部 (BRS) 确认我们使用 CRISPR/Cas9 基因组编辑技术开发的基因组编辑菥蓂 (Thlaspi arvense) 植物品系的监管状态。CCI 正在开发可将菥蓂用作新型油籽作物的技术。菥蓂不在美国农业部联邦有害杂草名单上,在多个州被认定为作物。此请求描述了一种通过改变种子成分提高了产品质量的 CCI 产品。由此产生的植物将在 [ ] 基因中具有一个单一的基因修饰,该修饰通过过早的终止密码子导致基因功能丧失,这可以通过常规育种方法获得。
大豆疫霉菌是研究植物病原菌卵菌的模式物种,早期利用大豆疫霉菌进行基因功能研究主要基于基因沉默技术,近年来,CRISPR/Cas9介导的基因组编辑技术在大豆疫霉菌中成功建立并广泛应用于卵菌中。本文介绍了基于CRISPR/Cas9的基因组编辑技术利用PEG介导的大豆疫霉菌原生质体稳定转化的操作步骤。将表达Cas9和单链指导RNA的pYF515以及候选基因的同源置换载体共转化大豆疫霉菌。最后将候选基因的ORF替换为整个潮霉素B磷酸转移酶基因(HPH)的ORF,实现精准敲除。
简单总结:最强大的基因编辑方法之一是 CRISPR(成簇的规律间隔的短回文重复序列)-Cas(CRISPR 相关)工具。家蚕(Bombyx mori)对全球经济有着巨大的影响,在养蚕业中发挥着举足轻重的作用。然而,家蚕作为科学界最伟大的贡献者之一,被用于建立用于生产目标蛋白的非凡生物反应器并作为一种伟大的实验模型生物而受到关注。在此,我们重点介绍利用 CRISPR-Cas 在家蚕基因组操作领域取得的进展。为了编辑家蚕的基因组,人们取得了显著的进展,例如揭示基因功能和开发对家蚕核多角体病毒(BmNPV)具有增强抗性的突变株。我们还讨论了 CRISPR-Cas 如何加速家蚕及其他领域的基础研究,从而凸显了昆虫生物技术在众多科学领域的巨大潜力。
为确保世界粮食生产和实现农业的可持续性,我们迫切需要寻找替代方法来保护农作物免受疾病侵害。迄今为止所使用的抗病遗传性抗性大多基于单个显性抗性基因,这些基因介导对入侵者的特定识别,而这种抗性往往会被病原体变体迅速破坏。干扰植物易感性 (S) 基因提供了一种替代方法,可以为植物提供被认为更持久的隐性抗性。S 基因可使植物病害得以发生,而它们的失活为农作物的抗性育种提供了机会。然而,S 基因功能的丧失会产生多效性影响。基因组编辑技术的发展有望提供强有力的方法来精确干扰作物 S 基因功能并减少权衡。
番茄既是一种重要的粮食作物,也是用于各种研究(包括了解基因功能)的模型植物。转化通常与番茄的所有广泛遗传和基因组资源相结合,以促进这些研究。我们实验室常用的转化方案已应用于许多不同的番茄基因型,并依赖于农杆菌对幼子叶切片的感染。我们使用载体系统进行过度表达,使用 RNA 干扰进行基因沉默,使用 CRISPR/Cas9 进行基因组编辑。用于设计基因构建体的载体包含可选择的标记基因,这些基因赋予对卡那霉素、潮霉素和除草剂成分双丙氨膦的抗性。本章详细介绍了我们遵循的农杆菌介导的番茄栽培和野生品种转化方案。
人类基因组的解码是21世纪最杰出的科学成就之一。跨越数十亿个核苷酸的人类基因组编码人类发展和功能所需的遗传指示。但是,了解其完整范围不仅需要排序。它需要能够管理和解释数据的复杂工具和数据库。生物信息学是结合生物学,计算机科学和信息技术的跨学科领域,对于管理基因组研究产生的大量数据至关重要。借助生物信息学工具和数据库,科学家可以分析遗传序列,识别突变,探索基因功能,并更好地了解基因与疾病之间的关系。本文探讨了生物信息学数据库,工具和软件在人类基因组分析中的作用,以及这些技术如何促进基因组学和个性化医学中的开创性发现。