激子的基本特性取决于库仑结合的电子和孔的自旋,山谷,能量和空间波形。在范德华材料中,这些属性可以通过层堆叠配置进行广泛设计,以创建具有静态平面外电偶极子的高度可调的层间激子,以牺牲振动性内置偶极偶极子的强度,负责轻度降低光线的振动。在这里我们表明,双层和三层2H-Mose 2晶体中的层间激子与地面(1 s)和激发态(2 s)的电端驱动耦合(2 s)。我们证明,这些独特的激子物种的杂种状态可提供强大的振荡力强度,大型永久性偶极子(高达0.73±0.01 ENM),高能量可调性(高达〜200 meV)以及对旋转和山谷特征的完全控制,因此激子G型可以在较大的范围内操纵ICKITON G-ICTOR。此外,我们观察到双层和三层激发态(2 s)互层激元及其与内部激子态(1 s和2 s)的耦合。我们的结果与具有自旋(层)选择性和超越标准密度功能理论计算的耦合振荡器模型非常吻合,促进了多层2H-MOSE 2作为一个高度可调的平台,可探索与强光相互作用相互作用的Exciton-Exciton相互作用。
抽象的沉浸式虚拟现实(VR)实现了自然主义的神经科学研究,同时进行了实验控制,但动态和互动刺激构成了方法论挑战。我们在这里探索了情绪唤醒,情感经验的基本特性和自然主义刺激下的枕骨 - 枕α功率之间的联系:37名年轻健康的成年人完成了沉浸式的VR体验,其中包括越过的越野车,并记录了他们的EEG,而他们的EEG被记录。然后,他们在观看经验重播的同时,不断地评估自己的主观情感唤醒。通过(1)分解连续的脑电图信号,同时通过(1)分解α功率和唤醒等级之间的启动,并通过(2)解码高唤醒和低唤醒时期的高唤醒时期,通过(1)分解连续的EEG信号,通过(1)分解连续的EEG信号,通过(1)分解连续的EEG信号,通过(1)分解连续的EEG信号,通过(1)分解连续的EEG信号,以高和低唤醒的方式通过(2)使用区分的常见的短暂的空间记忆和长期的长期恢复性的Neural Neural re recrillent neural recor re recor remanter,对情绪唤醒和parieto-cipipital Alpha功率之间的关联进行了测试和确认。我们成功地结合了脑电图和自然主义的身临其境的VR经验,以扩展有关情绪唤醒神经生理学的先前发现,对现实世界的神经科学。
四缸 Continentals 发动机可能是战后最受欢迎的飞机发动机,它为多种类型的认证和实验飞机提供动力,随着 Teledyne Continental Motors (TCM) 开始为轻型运动飞机市场提供更新和现代化版本,它重新引起了人们的关注。本文介绍了较旧的发动机系列以及从 A40 到 C90 型号之间的转换路线。1931 年,即莱特兄弟在小鹰镇首次飞行的 30 年后,大陆航空为新兴的私人飞机市场发布了一款风冷式水平对置四缸发动机。该发动机被命名为 A40,排量为 115 立方英寸,额定转速为 2550 rpm,功率为 37 hp。据说它是有史以来最简单的四冲程内燃机,它还因在大萧条时期维持私人航空业而受到赞誉。从早期的成功设计中诞生了现代航空史上一些最受欢迎和最可靠的飞机发动机,并且从中还发展出了一系列改进,这些改进推动了发动机产生更多功率,同时保持相同或更好的可靠性。至于简单性,不会再回到 A40 时代。具有里程碑意义的 Continental A50 于 1938 年发布。它在许多方面都比 A40 更坚固、更完善,并且它的设计保守,以适应当时的严峻形势。它的基本特性是适中的 5.4 比 1 压缩比和 171 立方英寸
金刚石和最近的碳化硅中的自旋 S = 1 中心已被确定为可用于各种量子技术的有趣固态量子比特。金刚石中氮空位中心 (NV) 是研究较多的案例,被认为是适用于大多数应用的量子比特,但也存在重大缺点。最近的研究表明,SiC 中的双空位 (V Si VC ) ° 和 NV (V Si NC ) 中心可以克服许多缺点,例如与微电子技术、纳米结构以及 n 型和 p 型掺杂的兼容性。特别是,4H-SiC 多型体是一种广泛用于功率器件的微电子半导体,这些问题已经得到解决,并且大规模基板 (300mmm) 可供商业化使用。研究较少的 3C 多型体可以拥有相同的中心 (VV、NV),并且具有额外的优势,因为它可以在 Si 上外延,从而允许与 Si 技术集成。执行光学操控和自旋状态检测的光谱范围从金刚石中 NV 中心的可见光 632 nm 移至 SiC 中双空位和 NV 中心的近红外 1200 – 1300 nm(电信波长)。然而,还有其他关键参数对于可靠的信息处理至关重要,例如自旋相干时间、芯片上的确定性位置和受控缺陷浓度。在这篇评论中,我们重新审视并比较了金刚石中 NV 中心以及 4H 和 3C-SiC 中双空位和 NV 中心的一些基本特性。
许多人类癌症,包括急性髓样白血病(AML),是由茎和祖细胞突变引起的。免疫表型分析表明,白血病在层次上发展,白血病干细胞中的突变与疾病传播相关并复发1,2。尽管可以使用细胞表面标记来富集白血病,但它们的频率往往是可变且低,遮盖机制,并阻碍有效的疗法3,4。为了定义人类患者的AML干细胞,我们使用旨在保留造血干细胞(HSC)功能的标签跟踪技术对各种白血病进行了功能基因组分析。我们发现,人类AML的传播是由罕见但静止的静态标签细胞(LRC)种群介导的,该细胞(LRC)种群通过当前已知的免疫表型标记逃避检测。我们表明,人类AML LRC静止是可逆的,保留遗传克隆竞争,维持其表观遗传。lrc静止是由以不同的以启动子为中心的染色质和基因表达动力学定义的,并由不同的AP-1/ETS转录因子网络控制,包括JUN,这与疾病持久性和不同患者的化学疗法抗性有关。这些结果能够对人类患者标本中免疫类型的白血病干细胞的前瞻性隔离和功能性遗传操纵,并在白血病发育和耐药性中建立了表观遗传可塑性的关键功能。我们预计这些发现将导致阐明白血病干细胞静止的基本特性,以及为其临床鉴定和控制的治疗策略设计。
本文在自由量子操作下建立了模拟量子通道的确切纠缠成本的单个字母公式,该量子量操作完全保留了部分转移的阳性(PPT)。首先,我们基于双方状态的κ键入的概念,引入了点对点量子通道的κ范围措施,并为其建立了几种基本特性,包括摊销崩溃,ppt superchannels下的单调性,ppt superchannels,addi-timitive timity,addi-timitive timitive timity,正常化,归一化,忠诚和非conconvexity。第二,我们介绍并解决了在平行和顺序设置中模拟量子通道的确切纠缠成本,并借助免费的PPT保护操作。尤其是我们确定在这两种情况下的纠缠成本均由相同的单个字母公式给出,κ键入量子通道。我们进一步表明,该成本等于发件人和接收器可以共享或生成的最大κ键。该公式可以通过半限定程序来计算,从而可以为一般量子通道提供有效的可计算解决方案。指出,顺序制度比平行制度更强大,当PPT超通道是免费的时,我们结果的另一个无表面含义是,这两个制度对于精确的量子通道模拟都具有相同的功率。对于几个基本的高斯量子通道,我们表明确切的纠缠成本由Holevo -Werner公式[Holevo and Werner,Phys提供。修订版A 63,032312(2001)],给出了这些通道的孔波妻子数量的操作含义。
晶体管及其使用,以及随之而来的半导体,是人类最伟大的技术成就之一。它们在计算、通信、交易和健康方面的日常使用中,是一股社会力量。在这次 75 周年庆典中,我在这里分享了晶体管成长过程中的一些经验教训。技术领域的新手和年轻人可能会发现这些小插曲很有趣,甚至很有用。关于晶体管的历史和未来,已经有很多文章进行了论述。通过将静态能量转换为信号能量的简单方法,它成为逻辑转换和通信的物理工具,即使不放大,它也是稳定性的重要反馈工具。它可以变形为多种形式,当它与其他结构结合在一起时,它会扩展到新功能。由于它内部有浮动电荷存储,因此它是一种准非易失性存储器;由于有电容器,因此它是一种快速且密集的动态存储器;当与其他晶体管配对时,它就变成了一种非常快速的静态存储器。静态随机存取存储器甚至具有自我意识这一不寻常的基本特性。它保持其状态,需要类似的交叉耦合元素来更改它或探测其状态。现代时代是由技术社会变革所造成的,这些变革源于发明、其发展以及它所衍生的新方向:与智力/学习或身体健康相关的追求正在展开,还有许多我们尚无法看到的追求。许多人已经写过这些转变。推测、想象和思想的互动是人类进化的重要食粮。出生于
大脑活动模式高度灵活,通常是复杂的,但也高度结构化。6在这里,我们研究了大脑活动模式的基本特性与正在进行的7个认知过程之间。为此,我们将降低算法和模式8分类器应用于功能性神经成像数据,因为参与者听了一个故事的故事,该故事是故事的故事的9个故事,或进行了静止状态扫描会议。这10个实验条件旨在需要处理的深度,并激发11个不同水平的认知参与度。我们考虑了数据的两个主要方面。首先,我们将参与者的最大可实现的解码精度视为记录模式的“信息性”的指标。第二,我们处理了达到阈值解码精度所需的特征14(组件)的数量,以作为神经模式的“压缩 - 15同一性”的代理(其中较少的组件表示更大的压缩)。总的来说,16我们发现,在完整的(未散布)故事聆听条件下,峰值解码准确性(可实现而无需限制fea-17 tures的数量)是最高的。但是,在完整的19个故事聆听条件下,实现可比较分类精度所需的功能的数字也最低。23在一起,我们的工作表明,根据持续的任务需求,我们的大脑网络灵活地重新配置了,并且与与低阶任务相关的活动模式相比,与21种高阶认知和高参与度相关的活动模式都更具信息性和可压缩性22。
量子计算是一种革命性的信息处理形式,它能够比传统(经典)方法更快地解决某些计算问题 [1, 2]。量子信息用量子比特表示,量子比特可以存在于 0 和 1 的叠加态中。多个量子比特可以以纠缠态的形式制备,这些纠缠态通常具有指数数量的叠加态,从而为量子计算机提供强大功能。量子算法可以用涉及通用离散量子门操作的电路来表示,这些电路将量子比特纠缠在一起,类似于将晶体管连接在一起以在经典计算机中执行逻辑运算。最近,基于门的量子计算机已经作为云计算服务提供,由 IBM [3] 和亚马逊网络服务 [4] 托管。这些云提供商提供两种截然不同的硬件类型:离子阱和超导量子比特。每个系统中对量子电路的控制仅限于某些量子逻辑门操作,并且它们的量子位具有明显不同的架构和错误过程。在这里,我们报告了几个小量子电路的执行情况,并基于它们的性能,我们研究了这些量子系统的基本特性,例如量子位连接、门噪声及其累积以及状态准备和测量 (SPAM) 错误。通过在两个量子位之间执行越来越多的操作来测试量子位噪声、门噪声及其累积。SPAM 误差是通过在确定的量子位状态下初始化后立即测量量子位来提取的。通过实现具有不同电路复杂度级别的 Bernstein-Vazirani 量子算法 [5] 来间接探测量子位连接。
变构是蛋白质的基本特性,它调节空间上相距遥远的位点之间的生化信息传递。在这里,我们报告了分子动力学 (MD) 模拟在发现 CRISPR-Cas9 中的变构通讯机制方面的关键作用,CRISPR-Cas9 是一种领先的基因组编辑机制,在医学和生物技术方面具有巨大的前景。MD 揭示了变构如何在 CRISPR-Cas9 功能的至少三个步骤中发挥作用:影响 DNA 识别、介导切割和干扰脱靶活性。发现激活协同 DNA 切割的变构通讯通过连接 HNH 和 RuvC 催化域的 L1/L2 环进行。这些“变构传感器”的识别启发了具有改进特异性的 Cas9 蛋白新变体的开发,为控制 CRISPR-Cas9 活性开辟了一条新途径。讨论的研究还强调了识别叶在催化 HNH 域的构象激活中的关键作用。具体而言,REC3 区域被发现通过感知 RNA:DNA 杂合体的形成来调节 HNH 的动态。REC3 的作用在 DNA 错配的情况下尤其重要。事实上,REC3 对在特定位置含有错配对的 RNA:DNA 杂合体的干扰导致 HNH 锁定在非活性“构象检查点”构象中,从而阻碍脱靶切割。总体而言,MD 模拟建立了 CRISPR-Cas9 变构现象的基本机制,有助于开发新的 CRISPR-Cas9 变体以改进基因组编辑的工程策略。