变构是蛋白质的基本特性,它调节空间上相距遥远的位点之间的生化信息传递。在这里,我们报告了分子动力学 (MD) 模拟在发现 CRISPR-Cas9 中的变构通讯机制方面的关键作用,CRISPR-Cas9 是一种领先的基因组编辑机制,在医学和生物技术方面具有巨大的前景。MD 揭示了变构如何在 CRISPR-Cas9 功能的至少三个步骤中发挥作用:影响 DNA 识别、介导切割和干扰脱靶活性。发现激活协同 DNA 切割的变构通讯通过连接 HNH 和 RuvC 催化域的 L1/L2 环进行。这些“变构传感器”的识别启发了具有改进特异性的 Cas9 蛋白新变体的开发,为控制 CRISPR-Cas9 活性开辟了一条新途径。讨论的研究还强调了识别叶在催化 HNH 域的构象激活中的关键作用。具体而言,REC3 区域被发现通过感知 RNA:DNA 杂合体的形成来调节 HNH 的动态。REC3 的作用在 DNA 错配的情况下尤其重要。事实上,REC3 对在特定位置含有错配对的 RNA:DNA 杂合体的干扰导致 HNH 锁定在非活性“构象检查点”构象中,从而阻碍脱靶切割。总体而言,MD 模拟建立了 CRISPR-Cas9 变构现象的基本机制,有助于开发新的 CRISPR-Cas9 变体以改进基因组编辑的工程策略。
主要关键词