。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月5日。 https://doi.org/10.1101/2025.01.31.635847 doi:Biorxiv Preprint
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 蚯蚓堆肥是将有机化合物生物降解为有助于植物生长的营养腐殖质的传统方法。压泥是甘蔗工业的废弃物之一,具有丰富的有机成分。在本研究中,压泥与生物炭结合进行蚯蚓转化。使用 Eudrlius eugeniae 将不同浓度(0、2、4 和 6%)的压泥和牛粪以三种不同的比例(1:1、2:1 和 3:1)添加到生物炭中,以产生增强的蚯蚓堆肥。在添加生物炭的蚯蚓堆肥组合中,蚯蚓的生长和生物量都有所增加,其中添加 4% 生物炭的 C7(PM+CD(2:1)和添加 6% 生物炭的 C4(PM+CD(1:1))的蚯蚓生长和生物量均达到最大值。微生物和酶水平分析表明,添加生物炭的组合比未添加生物炭的组合效果更好。总体而言,添加 4% 生物炭的组合 C3(PM+CD(2:1)在微生物和酶分析中效果最好,在第 45 天达到最大值。添加生物炭的组合的腐殖化作用也更好,最终样品中腐殖化指数最低的分别是添加 4% 和 6% 的压泥+牛粪的 C3(0.6820±0.027)和 C4(0.6912±0.031)。这项研究表明,添加 4% 浓度的生物炭对蚯蚓堆肥的腐殖化作用优于未添加生物炭的组合。以压泥为基质的 6% 和 C3 与 C4 的组合对蚯蚓的生长和繁殖有较好的促进作用。基质的腐殖化活性在分别添加 4% 和 6% 生物炭的 C3 和 C4 组合中也达到最大值。关键词:蚯蚓堆肥、压泥、蚯蚓转化、生物炭、蚯蚓
WHF、CSF 获得 INSERM、巴黎大学、索邦大学、CARPEM T8、Labex 免疫肿瘤学卓越计划、法国癌症研究所 (INCa)、HTE Plan Cancer (C1608DS) 和法国国家抗癌联盟的 Cartes d'Identité des Tumeurs (CIT) 计划的资助
塑料具有多种机械和热性能,已成为世界各地现代生活中必不可少的产品 [1,2],这不仅是因为它们制造成本低、稳定性和耐用性,还因为它们用途广泛。由于这些优势,根据欧洲塑料协会 (Plastics Europe) 的报告,塑料产量自 20 世纪 50 年代以来一直在稳步上升,到 2020 年已达到 3.67 亿吨 [3,4]。制造的塑料大部分用于包装短寿命产品的瓶子和袋子,导致大量一次性塑料的消费,这些塑料很容易被丢弃 [4,5]。这些活动产生的大量塑料导致数百万公吨的塑料废物在环境和垃圾填埋场中堆积 [2,6,7],造成毁灭性的环境污染,影响生态系统、野生动植物和人类健康,此外还会产生废物管理问题 [2,4,5,8]。其中,在环境中污染和积累为固体废物的最常见塑料类型是聚对苯二甲酸乙二醇酯(PET)、聚丙烯(PP)、聚乙烯(LDPE-HDPE)、氯乙烯(PVC)、聚氨酯(PU)和
摘要:目前转移性皮肤黑色素瘤的治疗方法包括免疫疗法和针对丝裂原活化蛋白激酶 (MAPK) 通路关键分子的药物,该通路通常由 BRAF 驱动突变激活。转移性 BRAF 突变黑色素瘤患者的整体反应对于结合 BRAF 和丝裂原活化蛋白激酶激酶 (MEK) 抑制剂的疗法更好。然而,大多数最初对疗法有反应的患者在数月内就会产生耐药性。获得性对靶向疗法的耐药性可能是由于黑色素瘤细胞中的其他基因改变以及通常与转录重编程和去分化细胞状态相关的非遗传事件。在第二种情况下,有可能识别由靶向疗法诱导的促纤维化反应,这些反应有助于改变黑色素瘤肿瘤微环境。已证实多种恶性肿瘤(包括乳腺癌和胰腺癌)的慢性纤维化与癌症之间存在密切的相互关系。在此背景下,纤维化对黑色素瘤药物适应性和治疗耐药性的贡献正在迅速显现。在这篇综述中,我们总结了最近的证据,强调了药物暴露和耐药黑色素瘤中纤维化疾病的特征,包括细胞外基质重塑增加、肌动蛋白细胞骨架可塑性增强、对机械线索的高度敏感性以及炎症微环境的建立。我们还讨论了几种潜在的治疗方案,用于操纵这种纤维化样反应来对抗耐药性和侵袭性黑色素瘤。
膜技术被视为一种环保且可持续的方法,在解决高能耗丙烯/丙烷分离过程中产生的大量能源损失方面具有巨大潜力。寻找用于这种重要分离的分子筛膜引起了极大的兴趣。在这里,一种氟化金属有机骨架 (MOF) 材料被称为 KAUST-7(KAUST:阿卜杜拉国王科技大学),具有明确的窄 1D 通道,可以根据尺寸筛分机制有效区分丙烯和丙烷,成功地被掺入聚酰亚胺基质中以制造分子筛混合基质膜 (MMM)。值得注意的是,KAUST-7 纳米粒子的表面功能化具有卡宾部分,可提供制造分子筛 MMM 所需的界面相容性,同时聚合物-填料界面的非选择性缺陷最少。具有高 MOF 负载(高达 45 wt.%)的最佳膜显示出 ≈ 95 barrer 的丙烯渗透率和 ≈ 20 的混合丙烯/丙烷选择性,远远超过了最先进的上限。此外,所得膜在实际条件下表现出坚固的结构稳定性,包括高压(高达 8 bar)和高温(高达 100°C)。观察到的出色性能证明了表面工程对于制备和合理部署用于工业应用的高性能 MMM 的重要性。
间充质基质细胞衍生的细胞外囊泡(MSC-EVS)是治疗许多神经退行性疾病的有前途的治疗工具。神经炎症在许多情况下通过相互依存的过程的编排在许多此类条件中起着重要作用,这些过程导致血脑屏障(BBB)破裂,免疫细胞浸润和神经元死亡。MSC-EVS显示了调节神经炎症的初步证据,但它们的作用机理仍然未知。因此,我们探讨了MSC-EV在调节脑周细胞中的潜力,该细胞类型在BBB维持中起着至关重要的作用,但尚未被研究为MSC-EVS的治疗靶点。脑周细胞是多面细胞,可以通过参与BBB稳态以及先天和适应性免疫反应来调节神经炎症。周细胞形态已显示出对体内炎症性刺激的响应发生变化,因此,我们使用这种行为来开发一种定量的形态分析方法来评估MSC-EVS的免疫调节功能,以高关注,低成本的方式。使用该测定法,我们能够证明在各种条件下生产的MSC-EV(2D,3D和对细胞因子启动的响应)可以诱导明显的周细胞形态反应,这表明趋化因子和细胞因子分泌的变化与神经炎症相关。
所有怀孕的大约10%受胎儿生长限制(FGR)的影响。FGR的主要病因是胎盘不足:胎盘不提供适当量的营养素和氧气。目前尚无FGR或胎盘功能不全的治疗方法。由于胎盘在FGR中的关键作用并为胎儿提供营养,因此为治疗性干预提供了绝佳的目标。使用豚鼠孕妇营养限制模型和重复的胎盘纳米粒子介导的IGF1处理,胎盘IGF1信号传导和养分传输途径的表征以了解FGR和治疗的变化。这项研究阐明了反复的胎盘纳米粒子介导的IGF1治疗导致胎儿生长的信号传导机制。总体而言,这项研究导致FGR和治疗组的胎盘内性别特异性激酶信号传导和营养转运蛋白变化。与我们先前使用此治疗的研究相结合,我们证明了这种治疗方法的基本分子信号传导,并概括了该疗法以实现未来人类翻译的合理性。