摘要:这项研究的目的是研究以不同浓度的锌(Zn)氨基酸对犊牛中免疫,抗氧化能力和肠道菌群组成的影响。基于添加到饲料中的锌补充量的量,将24个一个月的健康安格斯犊牛随机分为三组(每组四个男性和四个女性):40 mg/kg dm; B组,80 mg/kg DM;和C组,120 mg/kg DM。当犊牛达到三个月大(断奶时期)时,实验结束了。与组相比,C组的饮食锌氨基酸含量的增加促进了犊牛的生长,C组平均体重增加增加了36.58%(p <0.05)(p <0.05)。随着饮食锌氨基酸含量的增加,血清免疫功能的指标最初增加然后减少。特别是,A组和B组中免疫球蛋白M的含量高于C组(P <0.05),而B组中白介素-2的含量高于其他两个组(P <0.05)。此外,B组犊牛血清中超氧化物歧化酶和总抗氧化剂的含量高于C组(P <0.05),MDA水平低于C组(P <0.05)。此外,B组肠道肠道菌群中的α多样性高于A组和C组(P <0.05);主要的门是坚硬和杆菌的,而主要的属是未分类的氯吡啶甲甲状腺顺c和ruminococcus。线性判别分析表明,B组牛肉中细菌的相对丰度高于A组中的小牛的相对丰度,并且与实验组相比,Prevotellaceae-UCG-003的相对丰度更高。调节肠道菌群的平衡,从而促进犊牛的健康生长。
1米兰大学医学生物技术与转化医学系的肥胖研究中心,通过Vanvitelli 32,米兰,20129年,意大利; 2人类研究医院心血管医学系,Manzoni 56,20089 Rozzano(米兰),意大利; 3人类大学生物医学科学系,通过Rita Levi Montalcini 4,20090 Pieve Emanuele(米兰),意大利; 4麻醉,医学和生理学系,美国加利福尼亚大学90095 CA,美国加利福尼亚分校的David Geffen医学院; 5意大利国家研究委员会,遗传学与生物医学研究所,米兰,20090年,意大利; 6意大利安科纳60126的马尔凯理工大学实验与临床医学系;和布雷西亚大学布雷斯西亚大学分子与转化医学系7,意大利25123
Q132K 136 Ni(1)HRI(702)HRI(131)HRI(313)体外; RECNA(74)R148K 152 Ni(1)Ni(5)Ni(3)Ri(16)Ri(16)RI(16)体外; RECNA(74)I219K 222 RI(46)RI(17)RI(11)RI(27)体外; RECNA(74)I219L 222 Ni(5)Ni(2)Ni(1)Ni(2)Rg(76)Rg(76)Rg(76)I219R 222 RI(38)Ni(2.5)Ni(2.5)Ni(8.6)ri(8.6)Ri(8.6)Ri(8.6)Ri(8.6)Ri(63)in Vitro; Shur(74)T244P 247 RI(27)RI(69)Ni(4)Ni(4)Ni(4)Ni(9)体外; RECNA(74)H271Y 274 HRI(105)Ni(2)Ni(9)Ni(2)体外; South(74)E273d 276 Ri(13)HRI(427)RI(25)RI(90)体外; RECNA(74)R289K 292 HRI(> 4600)RI/HRI(11-67)HRI(405–2487)RI(16-35)在体外; rg; SUR(74,75,77,77)N291S 294 Ni(2)RI(10)Ni(1)Ni(1)Ni(1)Ni(1)Ni(3)体外; RECNA(74)R367K 371 RI(70)RI(64)RI(29)RI(19)体外; RECNA(74)E115V+I219L 119+22222 RI/HRI(306)Ni(8)Ni(2)Ni(2)Ni(4)RG(76)RG(76)B型,不是First Ni(2-3)RI(2-3)Ri(2-3)HRI(30-34)Ri(30-34)Ri(4-5)Ri(4-5)南:RG(79)
摘要:浸泡是制作速度的重要步骤。tempeh发酵通常涉及能够生产蛋白酶以分解蛋白质分子中肽键的自然存在。这项研究评估了在天然发酵过程中浸泡在蒸馏水中的12、24、36和48小时的蛋白质和氨基酸含量。在这项研究中,使用Kjeldahl技术确定粗蛋白,从蛋白质水解中确定氨基酸,并列举蛋白水解细菌以进行总板计数,并使用Vitek 2.0紧凑型系统进一步识别。结果表明,浸泡的千斤顶豆具有较高的蛋白质和氨基酸含量,人体需要16个必需氨基酸。浸泡的千斤顶豆的蛋白质含量在24和36 h时为35%到32%,48小时的蛋白质含量不等。浸泡12小时产生的氨基酸浓度最高,为38,000 mg/kg l-谷氨酸,最低14,000 mg/kg l-丙啉。七个孤立的细菌在脱脂牛奶琼脂上显示出蛋白水解活性,其菌落周围的透明区域为3.00 mm至10.65 mm。鉴定出的细菌是pediocococcus pentococcus pentocococcus,stenorophomonas一个元素粒细胞,sakazakii和klebsiella pneumonia ssp。总而言之,乳酸杆菌科和肠杆菌科是坦佩发酵过程中的主要细菌,表明在浸泡条件下,这些微叶酸盐之间的协同相互作用是它们在这种敌对环境中生存的一部分。
引言肾脏在调节哺乳动物的葡萄糖稳态方面具有重要作用。在肾小球中过滤了大约180克/天葡萄糖,绝大多数被肾近端小管细胞(KPTC)重吸收,主要是通过钠 - 葡萄糖葡萄糖共转运蛋白2(SGLT2)(SGLT2)(SGLT2)(1-3)。在糖尿病中,葡萄糖吸附增加,从而加剧了高血糖症(3)。sglt2抑制剂(SGLT2I)诱导糖尿病,通常用于治疗糖尿病。引人注目的是,大规模试验始终显示SGLT2I有效地防止了肾功能的下降,并改善了有或没有糖尿病患者的充血性心力衰竭的心脏功能;这些改善包括对末期肾脏疾病的进展减慢,心力衰竭的住院时间较少,死亡率降低(4-10)。早期临床研究表明,SGLT2I对非酒精性脂肪肝病(NAFLD)患者也有益(11,12)。有趣的是,SGLT2I Canagliflozin已显示可延长老年男性啮齿动物的寿命(13)。SGLT2I的这些强大的多机构有益作用表明,通过增加糖尿的葡萄糖负荷减少葡萄糖负荷会诱导系统的代谢重编程,从而影响遥远器官的代谢。ferrannini及其同事表明,在2型糖尿病患者中,SGLT2I诱导的糖尿症与内源性葡萄糖产生的增加有关,胰岛素敏感性增强以及从碳水化合物到脂质的底物利用率转移(14,15);已经假设这种代谢转移介导了SGLT2I的有益心脏作用(2)。根据这一假设,糖尿降低
人们普遍认为肿瘤是一种由癌细胞、细胞外基质、炎症细胞、免疫细胞和其他细胞组成的复杂组织。肿瘤微环境失调可维持细胞生长、侵袭和逃避免疫监视的存活,从而促进肿瘤的侵袭性。一些饮食营养素可以改变肿瘤微环境的概念极具吸引力。许多研究表明,高脂饮食引起的肥胖会影响代谢,从而抑制抗肿瘤免疫,但氨基酸如何改变肿瘤微环境并影响肿瘤免疫仍未完全了解。事实上,不同信号通路中的氨基酸代谢及其串扰会影响癌症患者的肿瘤免疫和治疗效果。我们的综述重点介绍了氨基酸影响肿瘤微环境的机制,并发现了癌症免疫治疗的潜在药物靶点。
引入严重的SARS-COV-2感染后死亡与抗病毒反应和免疫介导的肺损伤主要有关(1)。在组织病理学上,covid-19肺炎与弥漫性肺泡损伤(DAD),纤维化,白细胞浸润和微血管血栓形成有关(2-4)。爸爸的特征包括肺泡壁增厚,间质膨胀,透明膜沉积和肺细胞增生。研究人员已经开始描述肺病理学的转录组特征,尽管这些曲线旨在评估SARS-COV-2感染的细胞影响(5-7)。据我们所知,后期严重的器官病态与高水平的感染或活性病毒复制不一致(8、9)。在严重病例的肺组织中,检测SARS-COV-2 RNA或抗原的可变性支持了一种炎症的疾病模型(5,9)。与广泛的严重肺泡损伤相关的免疫贡献者和生物途径尚不清楚;因此,对COVID-19的病理特征有更深入的了解将补充组织和血液基免疫特征的知识越来越多(10)。先进的空间分析技术提供了识别原位蛋白质和RNA分布的工具,从而可以在感兴趣的特定组织学特征中及其周围解剖生物学过程(BPS)(11,12)。我们使用了高级,多重的ISH组织分析平台,以从3例患者的肺样本中多个空间离散区域的多个空间离散区域发电
生长分化因子 11 (GDF11) 和 GDF8 (MSTN) 是密切相关的 TGF- β 家族蛋白,它们与几乎相同的信号受体和拮抗剂相互作用。然而,GDF11 在体外和体内似乎比 GDF8 更有效地激活 SMAD2/3。配体具有不同的结构特性,将独特的 GDF11 氨基酸替换到 GDF8 中可增强所得嵌合 GDF8 的活性。我们通过基因改造 GDF11 和 GDF8 的成熟信号结构域,研究了它们在体内可能不同的内源性活性。将 GDF8 完全重新编码为 GDF11 会产生缺乏 GDF8 的小鼠,其 GDF11 水平比正常水平高出约 50 倍,肌肉质量略有下降,但对健康或生存没有明显的负面影响。将 GDF11 指尖区域的两个特定氨基酸替换为相应的 GDF8 残基,可导致产前轴向骨骼转变,与 Gdf11 缺陷小鼠一致,且骨骼或心肌发育或体内平衡没有明显紊乱。这些实验揭示了体内 GDF11 和 GDF8 成熟结构域之间的独特特征,并确定了早期骨骼发育对 GDF11 的特定要求。
Emtenan Mohammed Alkhudair办公室:5楼3号建筑物,办公室号269 e.mail:ealkhudair@ksu.edu.sa网站:http://fac.ksu.edu.sa/ealkhudair
摘要:分蘖角度是决定禾谷类作物株型和产量的重要性状。在重力刺激下,分蘖角度部分由LAZY1(LA1)蛋白在细胞核和质膜之间的动态重新分配来控制,但其潜在机制尚不清楚。在本研究中,我们基于对水稻(Oryza sativa L.)扩散分蘖突变体la1 G74V的分析,鉴定并描述了LA1的一个新的等位基因,该突变体在该基因预测的跨膜(TM)结构域编码区中发生非同义突变。该突变导致地上部重力性完全丧失,从而导致植物匍匐生长。我们的研究结果表明,LA1不仅定位于细胞核和质膜,而且定位于内质网。去除LA1中的TM结构域会使植物表现出与la1 G74V相似的扩散分蘖表型,但不影响质膜定位;因此,它与玉米中的直系同源物 ZmLA1 有区别。因此,我们认为 TM 结构域对于 LA1 的生物学功能是必不可少的,但该结构域并不决定蛋白质在质膜上的定位。我们的研究为 LA1 介导的地上性调控提供了新的见解。