摘要。现有的联合学习方法在涉及数据隐私和非IID数据的情况下有效地处理了分散的学习。但是,在现实情况下,每个客户端都动态学习新类,要求全局模型对所有可见的类进行分类。有效地减轻灾难性遗忘和数据异质性,我们提出了一种名为Pilora的简单有效方法。一方面,我们采用原型学习来学习更好的功能表示形式,并利用原型和类特征之间的启发式信息来设计原型重新重量调节,以解决由数据异质性引起的分类器偏见而无需重新培训分类器。另一方面,我们将增量学习视为学习独特的任务向量并在不同的Lora参数中编码它们的过程。因此,我们提出了增量的洛拉(Lora)来减轻灾难性遗忘。标准数据集的实验结果表明,我们的方法的表现优于最先进的方法。更重要的是,我们的方法在不同的环境和数据杂基的程度上表现出强大的稳固性和优越性。该代码可从https://github.com/ghy0501/pilora获得。
已确定有 10 亿吨生物质原料可用于生产可再生生物燃料和生物化学品。这是为运输部门提供轻型、重型和航空燃料能源的关键碳原料之一。木质纤维素原料的利用有助于减少石油进口需求、促进农业发展、创造就业机会和减少温室气体排放,从而提高能源安全。然而,迄今为止,运营挑战阻碍了大批量木质纤维素燃料和化学品的工业生产。因此,美国能源部已投入大量研究资金,以了解和提高先锋纤维素生物炼油厂的运营可靠性。本文介绍了从淀粉乙醇工艺中采用的木质纤维素转化技术。所开发的工艺最终成功演示了使用多种原料(包括柳枝稷、能源高粱和两种玉米粒纤维)进行的 1,000 小时综合运行。本文重点介绍了工艺开发,解决了困扰纤维素糖领域许多问题(并将继续困扰这些问题),例如生物质进料到设备中、高灰分含量、多样化的副产品价值等。
研究团队开发了自适应采样器ASr,一种基于任务多样性、熵和难度动态加权的分 布生成函数,以优化元学习模型的泛化性能,并为此提出了一种通用的元学习算法。 研究团队在多个基准数据集和不同学习场景下对所提方法进行了广泛实验,包括小 样本学习、跨域学习、多域学习和增量学习等,并从多个维度对方法的有效性、泛化性 、计算效率等进行了评估和对比,结果证明了所提方法在不同网络架构和元学习框架下 的优越性能和通用性。
摘要:本文提出了一种增量反步滑模(IBS)控制器,用于无尾飞机的轨迹控制,该控制器具有未知干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种限制虚拟控制输入速率和幅度的稳定性增强器(SE)。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,将激活第一层 SE 来修改轨迹跟踪误差;当虚拟控制输入超出边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。在 SE 的帮助下,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数自适应估计器,与 IBS 相结合,使控制器表现出良好的鲁棒性。最后,给出了两个仿真。第一次仿真表明系统对外部干扰和模型不确定性不敏感,第二次仿真证明了 SE 的有效性。
摘要:本文提出了一种增量反步滑模 (IBS) 控制器,用于无尾飞机的轨迹控制,该飞机具有未知的干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种稳定性增强器 (SE),它限制了虚拟控制输入的速率和幅度。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,第一层 SE 将被激活以修改轨迹跟踪误差;当虚拟控制输入超过边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。借助 SE,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数的自适应估计器,与 IBS 一起,使控制器表现出出色的鲁棒性。最后,给出了两个仿真结果。第一次仿真表明系统对外界干扰和模型不确定性不敏感,第二次仿真证明了SE的有效性。
基因序列聚类在计算生物学和生物信息学中非常重要且重要,用于研究系统发育关系和基因功能预测等。随着生物学数据量的快速生长(基因/蛋白质序列),基因序列聚类算法在低精度和效率方面面临着更多挑战。 基因序列数据库中增长的冗余序列通常有助于大多数聚类方法的记忆和计算需求的增加。 例如,原始的基于贪婪的增量比对(GIA)聚类算法获得了很高的精度聚类结果,但效率非常低。 已经开发了有效的贪婪增量聚类算法,其精确成本降低了,通常可以关闭速度的贸易聚类精确度以提高速度。 需要在精度和速度之间取得更好平衡的算法。 本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。 ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。 四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。 与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。 此外,我们开发了一个多节点版本来处理大型数据集。 该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。随着生物学数据量的快速生长(基因/蛋白质序列),基因序列聚类算法在低精度和效率方面面临着更多挑战。基因序列数据库中增长的冗余序列通常有助于大多数聚类方法的记忆和计算需求的增加。例如,原始的基于贪婪的增量比对(GIA)聚类算法获得了很高的精度聚类结果,但效率非常低。已经开发了有效的贪婪增量聚类算法,其精确成本降低了,通常可以关闭速度的贸易聚类精确度以提高速度。需要在精度和速度之间取得更好平衡的算法。 本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。 ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。 四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。 与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。 此外,我们开发了一个多节点版本来处理大型数据集。 该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。算法。本文提出了一种新型的基于贪婪的增量比对算法,称为NGIA,用于具有高效率和精度的基因聚类。ngia由一个预滤波器,修改后的短词过滤器,一种新的数据包装策略,一种修改的贪婪增量方法组成,并通过GPU并行化。四个独立数据集上的实验评估表明,所提出的工具可以以99.99%的高精度聚类。与CD-HIT,VSEARCH和UCLUST的结果相比,NGIA平均快13.6倍,6.2倍和1.7倍。此外,我们开发了一个多节点版本来处理大型数据集。该软件可从https://github.com/siat-hpcc/gene-sequence-clustering获得。强可伸缩性测试表明,NGIA的多节点版本可以以31%的并行效率扩展32个线程。©2022 Elsevier B.V.保留所有权利。
摘要 - 自然语言对话框是直观人类机器人相互作用的关键。,它不仅可以用来表达人类的意图,而且可以传达改进的指示,如果机器人无法正确理解命令。非常重要的是,将机器人赋予以渐进的方式从这种互动经验中学习的能力,以使他们能够改善自己的行为或避免将来犯错。在本文中,我们提出了一个系统,以从自然相互作用中实现复杂行为的增量学习,并证明其在人形机器人上的实现。基于最新进展,我们提出了一个系统,该系统基于使LLM能够在交互式控制台中生成Python语句以调用机器人感知和动作的互动式陈述的想法,从而将大型语言模型(LLMS)用于机器人行为的高级编排。通过将人类指示,环境观察和执行结果馈送到LLM,从而封闭了交互环路,从而告知下一个陈述的生成。具体来说,我们引入了增量提示学习,这使系统能够从错误中进行交互学习。为此,LLM可以将另一个负责基于人类反馈的当前交互的LLM调用。然后将改进的交互作用保存在机器人的内存中,从而在类似的请求中检索。我们将系统集成到人形机器人ARMAR-6的机器人认知结构中,并通过证明广义的渐进学习知识来定量(模拟)和定性(模拟和现实世界中)评估我们的方法。
必须提交的说明。在完成经批准的快速重建计划中规定的商定工作后,重建者应通知县评估员该工作已完成。县评估员随后应确定:(1) 重建项目是否在开发计划获得批准后的两年内全面完工;(2) 重建项目区域内房产的评估价值。
摘要 - 递增能力分析(ICA)和不同的电压分析(DVA)通常需要电池降解监控的恒定当前条件,这限制了它们在现实情况下的适用性。本文提出了一种统一的方法,可以在一般充电当前概况下启用基于ICA/DVA的降解监测,这在文献中尚未解决。首先,提出了一种新颖的虚拟增量能力(IC)和不同电压(DV)的概念。第二,两个相关的卷积神经网络(CNN),称为U-NET和CONC-NET,是为了构建虚拟IC/DV曲线的构建,并估算了跨任何状态(SOC)范围内的一般充电概况的健康状况(SOH),以满足某些约束。最后,提出了两个称为移动U-NET和移动网络的CNN,分别替换了U-NET和Conv-NET以进行车载实现。它们会大大减少计算和内存需求,同时在虚拟IC/DV曲线构建和SOH估计中保留性能。在具有各种快速充电协议和SOC范围的电池模块的广泛实验数据集上进行了测试,拟议的U-NET和移动U-NET构造精确的虚拟IC/DV曲线可以提取有价值的降级功能。建议的Conv-NET和移动网络提供的模块级SOH估计值,根平方误差(RMSE)小于0.5%。关键字 - 增量容量分析;差分伏分析;非恒定电流充电;快速充电;卷积神经网络;健康状况估计
5E:建议的增量或延迟:旧规则 5E 被建议的增量和延迟设置取代。5E1:混合时间控制的增量或延迟:新规则 5E 中添加了子规则,其措辞涉及混合时间控制。5E2:组织者未能指定增量或延迟:新规则 5E 中添加了子规则,其措辞涉及未指定增量或延迟的问题。5F:标准计时器:整个文本已被替换。5F1:增量时间控制的标准计时器:定义用于增量时间控制的时钟。5F1a:没有可用的增量时钟:当没有可用增量时钟时该怎么办。5F1b:设置用于增量时间控制的非增量时钟:如何设置增量时间控制中使用的非增量时钟。5F1b1:变化:组织者如何为非增量时钟指定不同的时间控制。 5F2:延迟时间控制的标准计时器:定义用于延迟时间控制的时钟。