奈伊(Ney:土耳其芦笛,Nay)乐器 Nây-ı Şerîf 的乐音是最接近人声的声音,因此是一种自然的声源。科学研究表明,大脑会产生不规则的“伽马信号”(γ),无论是阿尔茨海默病还是帕金森病。奈伊乐器的自然乐音将能够为阿尔茨海默病和帕金森病的治疗提供积极作用。除此之外,使用特殊的扩音设备可以将奈伊乐器的声音频率提高到非常高的值,并且可以消除血脑屏障中的不透水层。奈伊乐器的声音将是一个自然的原始声源,然后将这个原始声音的频率增加到很高的速率,从而产生巨大的声能,因此“ELMAS热力学理论”所述的具有热力学相互作用的能量传递过程可能会部分或全部消除阿尔茨海默病患者血脑屏障中的不透水层。
方法 • 加深对船舶和潜艇运动的控制物理、过程、预测和控制的理解 • 通过基础实验建立知识库,以了解粗糙度、各种几何复杂性、减阻技术、水声源、分离流、不稳定性等对湍流的独立和耦合作用 • 建立控制物理知识库,以及用于推进器设计和行为的准确、可靠和稳健的预测/模拟工具和方法
抽象准确地定位了3D声音源并估算其语义标签(其中可能不可见,但假定源位于场景中物体的物理表面上)具有许多真实的应用,包括检测气体泄漏和机械故障。在这种情况下,视听弱相关性在得出创新方法时提出了新的挑战,以回答是否或如何使用交叉模态信息来解决任务。朝着这一目标,我们建议使用由针孔RGB-D摄像头和共面四通道麦克风阵列(MIC-ARRAY)组成的声学相机钻机(MIC-Array)。通过使用此钻机来记录来自多视图的视听信号,我们可以使用跨模式提示来估计声源3D位置。特别是,我们的框架Soundloc3d将任务视为集合预测问题,集合中的每个元素都对应于潜在的声源。鉴于视听弱相关,首先是从单个视图mi-crophone阵列信号中学到的集合表示,然后通过主动合并从多视rgb-d图像揭示的物理表面提示来确认。我们证明了Soundloc3d在大型模拟数据集上的效率和优势,并进一步显示了其对RGB-D测量不准确性和环境噪声干扰的鲁棒性。
定向频率分析和记录 (DIFAR) 声纳浮标已被海军使用数十年,可通过单个传感器为低频(小于 4 kHz)声源提供磁方位。计算技术的进步使这种声学传感器技术越来越易于使用且功能更强大。此处提供的信息旨在帮助新用户确定 DIFAR 传感器是否适合鲸鱼声学研究。须鲸的声学探测范围平均接近 20 公里,但根据条件不同,范围从 5 到 100 公里不等。DIFAR 声纳浮标到典型研究船的无线电接收范围平均为 18 公里,船上有全向天线,声纳浮标上有标准天线。对一组鲸鱼叫声分析了 DIFAR 方位精度,其中鲸鱼的轨迹是众所周知的。经发现,DIFAR 传感器的方位标准偏差为 2.1 度。可以使用 DIFAR 方位消除已知位置研究船声音的系统误差和磁偏差。DIFAR 传感器阵列需要的传感器比传统水听器阵列少,有时可以提供比传统水听器使用的“到达时间”双曲线方法更准确的源位置。与传统水听器相比,使用 DIFAR 传感器更容易定位船舶等连续声音,因为通常很难找到瞬态特征来估计使用传统水听器阵列进行双曲线定位所需的时间差。DIFAR 水听器系统非常适合露脊鲸、蓝鲸、小须鲸、长须鲸和其他须鲸的叫声,以及包括船舶在内的许多其他声源。
摘要 — 目标:当存在多个声源时,当前助听器中的降噪算法缺乏有关用户关注的声源的信息。为了解决这个问题,它们可以与听觉注意解码 (AAD) 算法相辅相成,该算法使用脑电图 (EEG) 传感器解码注意力。最先进的 AAD 算法采用刺激重建方法,其中关注源的包络从 EEG 重建并与各个源的包络相关。然而,这种方法在短信号段上表现不佳,而较长的片段在用户切换注意力时会产生不切实际的长检测延迟。方法:我们提出使用滤波器组公共空间模式滤波器 (FB-CSP) 解码注意力的方向焦点作为替代 AAD 范式,它不需要访问干净的源包络。结果:提出的 FB-CSP 方法在短信号段上的表现优于刺激重建方法,在相同任务上的表现也优于卷积神经网络方法。我们实现了高精度(1 秒窗口为 80%,准瞬时决策为 70%),足以实现低于 4 秒的最小预期切换持续时间。我们还证明解码器可以适应来自未见对象的未标记数据,并且仅使用位于耳朵周围的部分 EEG 通道来模拟可穿戴 EEG 设置。结论:提出的 FB-CSP 方法可以快速准确地解码听觉注意力的方向焦点。意义:在非常短的数据段上实现高精度是朝着实用的神经引导听力设备迈出的重要一步。
摘要 — 目标:当存在多个声源时,当前听力假体中的降噪算法缺乏有关用户关注的声源的信息。为了解决这个问题,可以将它们与听觉注意力解码 (AAD) 算法相结合,该算法使用脑电图 (EEG) 传感器直接从大脑解码注意力。最先进的 AAD 算法采用刺激重建方法,其中关注源的包络从 EEG 重建并与各个源的包络相关联。然而,这种方法在短信号段上表现不佳,而较长的片段在用户切换注意力时会产生不切实际的长检测延迟。方法:我们提出使用滤波器组通用空间模式滤波器 (FB-CSP) 解码注意力的方向焦点作为替代 AAD 范式,它不需要访问干净的源包络。结果:提出的 FB-CSP 方法在同一任务上优于传统刺激重建方法以及卷积神经网络方法。我们实现了高精度(1 秒窗口为 80%,准瞬时决策为 70%),足以实现低于 4 秒的最小预期切换持续时间。我们还证明该方法可用于未见受试者的未标记数据,并且仅使用位于耳朵周围的部分 EEG 通道来模拟可穿戴 EEG 设置。结论:提出的 FB-CSP 方法可以快速准确地解码听觉注意力的方向焦点。意义:在非常短的数据段上实现高精度是朝着实用神经引导听力假体迈出的重要一步。
定向频率分析和记录 (DIFAR) 声纳浮标已被海军使用了数十年,它通过单个传感器为低频(小于 4 kHz)声源提供磁方位。计算技术的进步使这种声学传感器技术越来越易于使用且功能更强大。此处提供的信息旨在帮助新用户确定 DIFAR 传感器是否适合鲸鱼声学研究。须鲸的声学探测范围平均接近 20 公里,但根据条件不同,范围从 5 到 100 公里不等。DIFAR 声纳浮标到典型研究船的无线电接收范围平均为 18 公里,船上有全向天线,声纳浮标上有标准天线。对一组鲸鱼叫声分析了 DIFAR 方位精度,其中鲸鱼的轨迹是众所周知的。经发现,DIFAR 传感器的方位标准偏差为 2.1 度。可以使用 DIFAR 方位消除已知位置研究船声音的系统误差和磁偏差。DIFAR 传感器阵列需要的传感器比传统水听器阵列少,有时可以提供比传统水听器使用的“到达时间”双曲线方法更准确的源位置。与传统水听器相比,使用 DIFAR 传感器更容易定位船舶等连续声音,因为通常很难找到瞬态特征来估计使用传统水听器阵列进行双曲线定位所需的时间差。DIFAR 水听器系统非常适合露脊鲸、蓝鲸、小须鲸、长须鲸和其他须鲸的叫声,以及包括船舶在内的许多其他声源。
第二章:水下目标跟踪 ................................................................................................22 2.1 声纳系统基本原理 ......................................................................................................22 2.1.1 传输损耗 ................................................................................................................23 2.1.1.1 声速剖面(SVP) ......................................................................................24 2.1.1.2 声音传播路径 ................................................................................................25 2.2 反潜战目标的声源 ......................................................................................................32 2.3 声纳浮标设备 .............................................................................................................34 2.4 被动声纳浮标 .............................................................................................................35 2.5 DIFAR 声纳浮标 .............................................................................................................37 2.5.1.1 系统操作 .............................................................................................................37 2.5.1.2 信号处理技术及其局限性 .............................................................................39 频谱分析 ................................................................................................................40 2.6研究进展与现状................................................................................48 2.6.1 目标检测......................................................
表 2-1:与常见声源相关的典型声压级 ...................................................................................................... 2-2 表 3-1:产权线噪声限制 ...................................................................................................................... 3-3 表 4-1:CSE 项目环境噪声级 (2011) ............................................................................................. 4-1 表 5-1:施工噪声级 ...................................................................................................................... 5-2 表 6-1:现有交通噪声级 ............................................................................................................. 6-2 表 6-2:施工期间的未来交通噪声级 ............................................................................................. 6-2 表 6-3:交通噪声级的增加 ............................................................................................................. 6-2 表 7-1:主要设备噪声级 ............................................................................................................. 7-1 表 7-2:电池储能系统噪声级 ............................................................................................................. 7-1 表 7-3:变电站噪声级 ............................................................................................................. 7-1