1-不同疾病研究小组中的免疫反应,医学实验室科学系,应用医学科学学院,国王阿卜杜勒齐兹大学,沙特阿拉伯吉达。2中心基因组医学研究的卓越中心,沙特阿拉伯吉达国王阿卜杜勒齐兹大学。https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。 :( 00966568026868)。 摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。 指定的聚合物纳米成型(N.F.) 基于在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。 我们生产并表征了N.F. 硫化壳壳中包裹的环孢菌素(T.C.) 透明质酸(H.A.)的最外层涂层。 研究中的研究证实了H.A. 在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。 当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。 ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。 XRD验证了其晶体学性质,该性质呈现N.F. DSC证明了N.F. 它显示了合成的N.F.https://orcid.org/0000-0002-7231-3386 *通信:Maisa Siddiq Abduh,mabdoh@kau.edu.edu.sa,国王阿卜杜勒齐兹大学,沙特阿拉伯杰达,沙特阿拉伯;电话。:( 00966568026868)。摘要:一种有效的免疫抑制性化学治疗药物(CSA)治疗许多癌症,尤其是恶性癌,急性白血病和三阴性乳腺癌(TNBC)。指定的聚合物纳米成型(N.F.)在表面上具有配体改变的药物递送技术是为了改善预期区域的主动部分递送,并提高了延长治疗的疗效。我们生产并表征了N.F.硫化壳壳中包裹的环孢菌素(T.C.)透明质酸(H.A.)的最外层涂层。研究中的研究证实了H.A.在三阴性乳腺癌细胞中与对接位置A和B的受体CD44结合。当药物与聚合物化合物相互作用时,Zeta检查显示粒径为192nm,PDI为0.433,ZETA电位为38.9 mV。ftir和拉曼的研究还支持疏水基团,多孔表面和集结特征的存在。XRD验证了其晶体学性质,该性质呈现N.F.DSC证明了N.F.它显示了合成的N.F.特别有助于局部药物输送系统(DDS),SEM和TEM揭示具有光滑外部的圆形纳米颗粒。在高温下是稳定的。NF显示了85%的药物封装,对药物释放的动力学研究表明N.F.在低pH值下遵守Higuchi模型的分散模型。与典型的CSA在12小时内立即释放相反,维特罗的研究表明,pH 7.4和6.8的连续溶解延长,最多72小时。与原始环孢素相比,使用MTT测试对正常乳腺上皮细胞和三重阴性乳腺癌细胞进行了测试,对用环孢菌素封装的THC-HA的体外肿瘤预防特性进行了测试。在降低浓度及其对正常细胞的有效性下的强大细胞毒性潜力。这些特征提高了准备好的新型N.F.S作为有效的药物成分和对癌症的有效治疗部分的长期活力,有效性和主动靶向。关键词:乳腺癌,CD44,环孢菌素,透明质酸,纳米型,三阴性乳腺癌,硫醇壳聚糖,靶向化学治疗药物的靶向
1 北京大学口腔医学院·医院口腔材料科,北京 100081;dandan66x@126.com (DX);yuanshenpo@163.com (SY) 2 口腔数字化医疗与材料国家工程实验室,国家口腔疾病临床研究中心,口腔数字医学与材料北京市重点实验室,国家药品管理局口腔材料重点实验室,卫生部数字化口腔工程与技术研究中心,北京 100081;drwangfeilong@126.com 3 北京大学口腔医学院·医院修复科,北京 100081 4 国家药品管理局医疗器械技术审评中心,北京市海淀区 100081;panshuo@cmde.org.cn * 通信地址:liuyunsong@hsc.pku.edu.cn (YL); xuyx@hsc.pku.edu.cn (YX)
Div> A Department of Chemistry, Faculty of Mathematics and Natural Science, University of North Sumatra, Medan, 20155, North Sumatra, Indonesia B Center of Excellent Chitosan and Advance Materials, University of North Sumatra, 20155, Medan, Indonesia C Department of Pharmacology and Therapeutics, Faculty of Medicine, University Mechanical Engineering, Faculty of Engineering, Mercu Buana University, West Jakarta, Indonesia E伦敦大学学院材料发现研究所,伦敦大学学院,WC1E 7JE,英国f物理学系,数学和自然科学学院,化学工程学院,化学工程,工程学院,麦加塞拉比大学,麦加,麦卡,班达·阿塞23245
热解转化是通往碳基纳米构造的最有希望的可持续途径之一,包括碳点(CDS)。然而,功能化碳点的分子组成仅限于杂原掺杂,并掺入了几个单一金属前体。此外,大多数这些修改都是通过剧烈的后移植程序进行的,需要有机溶剂来用于碳扩散,并且由于不兼容的实验条件而占据了大型潜在反应物的库。在与知名文献的显着差异中,我们在这里披露了一种创新且高度用途的方法,以丰富碳点功能。这种简单的方法将壳聚糖作为碳前体和金属烷氧化物融合为陶瓷前体,并通过碳水化合物溶液的热液转化来探索两个不同的“金属氧化物@碳点”相的双胞胎生长。由于壳聚糖朝金属烷氧化物前体的结构导向效应,一组晶体金属氧化物,包括二氧化钛,氧化钛和氧化铁簇,在原位形成的氮含量碳框架中直接融合。独特的方法,以下方法将水作为溶剂和可再生生物量作为碳源,并有望阐明废弃的生物废物在工程功能性纳米材料方面的隐藏才能。
收到日期:2022-01-20/修订接受日期:2022-01-31/发表日期:2022-02-01 摘要 本综述主要关注由植物(淀粉、纤维素、果胶)、动物(壳聚糖、明胶)和微生物(右旋糖酐)制成的纳米颗粒药物输送系统。在此,重点关注生物聚合物及其衍生物的物理化学性质及其在癌症治疗中的作用机制。基于纳米颗粒的药物输送系统通过以下方式提高疗效:增加易损药物和蛋白质的半衰期,提高疏水性药物的溶解度,并允许在患病部位控制和靶向释放药物。在所有提到的生物聚合物中,只有右旋糖酐和纯果胶是有问题的。一些临床研究表明,右旋糖酐会引起意想不到的副作用,例如血小板减少和肝毒性,而纯果胶基材料则具有不良的膨胀和腐蚀特性。阿霉素被广泛用作治疗多种类型的乳腺癌、肺癌、结肠癌、卵巢癌、前列腺癌和膀胱癌实体瘤的有效化疗剂,因此几乎与所有这些生物聚合物联合使用。 关键词:壳聚糖、淀粉、生物聚合物、药物输送系统、癌症治疗 引言 癌症是继心血管疾病之后全球第二大死亡原因 [1]。为了克服与癌症治疗相关的挑战,人们投入了大量的研究精力来利用纳米技术的有益特性。目前,近 25% 的主要药物化合物及其衍生物都来自天然资源。目前正在筛选天然化合物来治疗几种主要疾病,包括癌症、
石灰土、矿渣、污泥、改性沥青等。天然有机吸附剂包括锯末、椰子壳、玉米芯废料、茶叶废料、稻壳、树皮、榛子壳、羊毛、泥炭和壳聚糖;合成吸附剂包括纳米金属氧化物、零价铁、改性纳米材料等。纳米吸附剂,特别是磁性纳米吸附剂,由于其反应性高、活性位点多、表面积大,具有巨大的工业潜力。它们的缺点包括不稳定和随之而来的聚集,这会减少它们的表面积;结果,它们的反应性降低。为了防止聚集和
目的:为突破各级生物屏障,提高siRNA的递送效率,通过组氨酸、胆固醇修饰的羧甲基壳聚糖与抗EGFR抗体(CHCE)自组装,制备了一种多功能siRNA递送系统(CHCE/siRNA纳米粒)。方法:通过动态光散射和扫描电镜检测CHCE/siRNA NPs的形貌;体外通过流式细胞术和共聚焦激光扫描显微镜评估其肿瘤靶向性、细胞摄取和内体逃逸能力,证实了CHCE/siRNA NPs的基因沉默和细胞杀伤能力;体内通过IVIS成像系统检测CHCE/siRNA NPs的生物分布,并证实了NPs在裸鼠肿瘤模型中的治疗效果。结果:CHCE/siRNA NPs呈纳米球形,粒径分布窄。体外实验中,CHCE/siRNA NPs 兼具肿瘤靶向性和 pH 响应性的双重功能,能够促进细胞结合、细胞摄取和内体逃逸,可有效沉默血管内皮生长因子 A (VEGFA),引起细胞凋亡并抑制增殖。体内实验中,CHCE/siRNA NPs 可靶向肿瘤部位,敲低 VEGFA,达到更好的抗肿瘤效果。结论:成功制备了一种兼具肿瘤靶向性和 pH 响应性的新型 siRNA 递送系统,该系统可突破生物学屏障,深入肿瘤,达到更好的肿瘤治疗效果,为 siRNA 提供了一种新的理想递送平台。关键词:多功能羧甲基壳聚糖,靶向递送,内体逃逸,基因沉默,抗肿瘤治疗
本研究介绍了一种生产可打印的,由琼脂糖(Ag)和二氧化碳饱和壳壳壳(CS)水凝胶配制的可打印的生物学的方法。这项研究确定了中等分子量Chi Tosan是生物学生产的最佳选择,首选的壳聚糖水凝胶含量为40-60%。流变分析揭示了生物学的假塑性行为和27.0至31.5°C之间的SOL-GEL相变。C。基于MMW的基于MMW的生物INK也显示出最稳定的挤出特征。选择生物键的壳聚糖的选择还基于对聚合物的抗菌活性的评估,其分子量的函数和脱乙酰基的程度,指出大肠杆菌和链球菌的细胞还原率显着,分别为1.72和0.54,分别为1.72和0.54。通过MTT和LDH测试通过MTT和LDH测试评估的细胞毒性评估证实了L929,HACAT和46BR.1 N细胞系的生物学安全性。 此外,XTT增殖测定法证明了生物学对46br.1 N成纤维细胞增殖的刺激作用,与胎牛血清(FBS)观察到的成纤维细胞相当。 FTIR光谱证实了生物互入为物理聚合物混合物。 总而言之,CS/AG Bioink展示了在包括皮肤再生在内的组织工程应用中晚期空间细胞培养物的有希望的潜力。的细胞毒性评估证实了L929,HACAT和46BR.1 N细胞系的生物学安全性。此外,XTT增殖测定法证明了生物学对46br.1 N成纤维细胞增殖的刺激作用,与胎牛血清(FBS)观察到的成纤维细胞相当。FTIR光谱证实了生物互入为物理聚合物混合物。总而言之,CS/AG Bioink展示了在包括皮肤再生在内的组织工程应用中晚期空间细胞培养物的有希望的潜力。
摘要简介:肿瘤微环境(TME)的免疫抑制背景是乳腺癌(BC)治疗的重大障碍。针对涉及TME免疫抑制环境的癌症核心信号通路的组合疗法已成为克服TME免疫抑制并增强患者治疗结果的有效策略。这项研究提供了令人信服的证据表明,靶向缺氧诱导型因子-1α(HIF-1α)以及化学疗法和免疫诱导因子以及通过调节TME导致实质性抗癌作用。方法:通过siRNA吸附方法合成壳聚糖(CS)/HIF-1Alpha siRNA纳米复合物。纳米颗粒进行了充分的表征。CS/HIF-1αsiRNA细胞毒性。在BALB/C轴承4T1肿瘤中评估了联合疗法的抗癌作用。qPCR和蛋白质印迹用于评估与TME免疫抑制诱导有关的某些关键基因和蛋白质的表达。结果:HIF-1αsiRNA成功地加载了壳聚糖纳米颗粒。HIF-1αsiRNA纳米复合体显着抑制HIF-1α的表达。三重联合疗法(紫杉醇(PTX) +咪喹莫德(IMQ) + CS/HIF-1αsiRNA)抑制了肿瘤的生长,并下调了癌症进展基因,同时上调了细胞免疫相关的细胞因子。没有CS/HIF-1αsiRNA治疗的小鼠显示癌症抑制作用较少和TME免疫抑制因子。这些结果表明,与其他组合治疗相比,与PTX和IMQ协同抑制癌症进展的抑制作用更明显地抑制癌症的进展。结论:将HIF-1αsiRNA与PTX和IMQ结合在一起是多模式处理的有望。它有可能减轻TME抑制作用,并显着增强免疫系统对抗肿瘤细胞生长的能力,从而在与BC斗争中具有希望的灵感。
然而 Fe3O4 磁性纳米粒子易发生团聚,且由于保存不当容易被氧化,大大降低了其超顺磁性,在很大程度上限制了其在生物医学领域的应用。近年来,研究人员报道了许多对 Fe3O4 MNPs 进行表面改性的方法,如聚乙烯亚胺18、聚乙二醇 (PEG)19 和壳聚糖20,不仅提高了 Fe3O4 磁性纳米粒子的分散性和稳定性,而且增强了其生物相容性和可降解性,赋予 Fe3O4 磁性纳米粒子新的性能和功能。作为有效的药物载体,由于 Fe3O4 MNPs 具有非常小的纳米尺寸,可以通过增强渗透和保留效应 (EPR) 被动靶向肿瘤细胞。21,22
