组件包括功率分配器、混合定向耦合器、多路复用器、循环器和隔离器。有源组件系列包括低噪声放大器、驱动放大器、限幅放大器和功率放大器,控制组件包括多端口开关、衰减器、混频器、锁相介质谐振器振荡器 (PLDRO)、合成器等。多端口多通开关最多 16 个端口,覆盖多个倍频程,速度快、功率大,端口之间隔离度更高,这些都是内部设计和开发的。微波和毫米波组件、子系统和系统的全部系列都是内部设计、实现、组装、调试和测试的,所需的技能和经验已经很成熟。其中所有或大部分都是通过生产合作伙伴作为组件、子系统和系统或集成模块生产的。
传感器:机械和光学限位开关、编码器、热电偶、应变计、CCD 摄像机、红外传感器、压电传感器、电容式传感器、扭矩传感器、触觉传感器、陀螺仪和超声波传感器。执行器:直流电机、步进电机、交流电机、气动执行器、液压执行器、记忆形状合金。信号调节:组件互连、放大器、模拟滤波器、调制器和解调器、模拟数字转换、采样保持电路、多路复用器、数字滤波器和惠斯通电桥的软件和硬件实现。控制:H 桥电机控制、PWM 电机控制、步进电机控制、液压和气动执行器的非线性控制、PLC、SCADA 系统、工业现场总线、微处理器控制。
整合光子结构或元素,例如波导,光电二极管,激光器和多路复用器对测试和组装过程提出了各种各样的挑战,从晶圆级开始到最终包装。共同的主题:多个自由度的多个通道,多个元素和多个交互输入以及输出,所有这些都需要多个对齐优化。传统上,这是一项耗时且昂贵的任务。pi的多通道光子学对齐(FMPA)系统和独特的专有对齐算法,它们会自动启用跨通道,设备和自由度的同时对齐,并在快速步骤中优化整体一致性。随后,与串行操作相比,可能会减少99%的时间和成本。
原则上,进入 HF 通道的单端输入信号通过输入端的反相门被分解成差分信号。下面的电容电阻网络将信号分解成瞬态脉冲,然后由比较器将其转换为 CMOS 电平。比较器输入端的瞬态脉冲可以高于或低于共模电压 VREF,具体取决于输入位是从 0 变为 1 还是从 1 变为 0。比较器阈值根据预期的位转换进行调整。HF 通道比较器输出端的决策逻辑 (DCL) 测量信号瞬态之间的持续时间。如果两个连续瞬态之间的持续时间超过某个时间限制(例如低频信号的情况),DCL 会强制输出多路复用器从高频切换到低频通道。
三十多年来,Amphenol CIT 一直为航天应用(地球轨道及更远、载人和无人任务)提供高可靠性 RF 同轴电缆组件(柔性和半刚性)。凭借针对 Amphenol CIT 电缆量身定制的坚固的 Amphenol CIT 连接器设计,可打造优化的电缆组件,我们在提供微波传输线产品方面拥有丰富的经验,这意味着您可以与我们合作,为您提供经过验证的解决方案,以应对您最苛刻的航天技术挑战,包括 V 波段的工作频率、功率处理(CW、多路复用器、电离)、PIM、辐射、热真空和低温操作等。Amphenol CIT 产品已通过多项特定项目要求的认证,并可根据 NASA EEE-INST-0002 和 ESCC 3408 提供。
2 Google Quantum AI,加利福尼亚州戈利塔 超导量子处理器是最先进的量子计算技术之一。基于这些设备的系统已经实现了后经典计算 [1] 和量子纠错协议的概念验证执行 [2]。虽然其他量子比特技术采用自然产生的量子力学自由度来编码信息,但超导量子比特使用的自由度是在电路级定义的。当今最先进的超导量子处理器使用 transmon 量子比特,但这些只是丰富的超导量子比特之一;在考虑大规模量子计算机的系统级优化时,替代量子比特拓扑可能会证明是有利的。在这里,我们考虑对 Fluxonium 量子比特进行低温 CMOS 控制,这是最有前途的新兴超导量子比特之一。图 29.1.1 比较了 transmon 和 Fluxonium 量子比特。 transmon 是通过电容分流约瑟夫森结 (JJ) 实现的,是一种非线性 LC 谐振器,其谐振频率为 f 01,非谐性分别在 4-8GHz 和 200-300MHz 范围内。transmon 有限的非谐性约为 5%,限制了用于驱动量子比特 f 01 跃迁的 XY 信号的频谱内容,因为激发 f 12 跃迁会导致错误。以前的低温 CMOS 量子控制器通过直接 [3,4] 或 SSB 上变频 [5,6] 复杂基带或 IF 包络(例如,实施 DRAG 协议)生成光谱形状的控制脉冲;这些设备中高分辨率 DAC 的功耗和面积使用限制了它们的可扩展性。fluxonium 采用额外的约瑟夫森结堆栈作为大型分流电感。这样就可以实现 f 01 频率为 ~1GHz 或更低的量子比特,而其他所有跃迁频率都保持在高得多的频率(>3GHz,见图 29.1.1)[7]。与 transmon 相比,fluxonium 的频率较低且非谐性较高,因此可以直接生成低 GHz 频率控制信号,并放宽对其频谱内容的规范(但需要更先进的制造工艺)。在这里,我们利用这一点,展示了一种低功耗低温 CMOS 量子控制器,该控制器针对 Fluxonium 量子比特上的高保真门进行了优化。图 29.1.2 显示了 IC 的架构。它产生 1 至 255ns 的微波脉冲,具有带宽受限的矩形包络和 1GHz 范围内的载波频率。选择规格和架构是为了实现优于 0.5° 和 0.55% 的相位和积分振幅分辨率,将这些贡献限制在平均单量子比特门错误率的 0.005%。它以 f 01 的时钟运行,相位分辨率由 DLL 和相位插值器 (PI) 实现,而包络精度则由脉冲整形电路实现,该电路提供粗调振幅和微调脉冲持续时间(与传统控制器不同,使用固定持续时间和精细幅度控制)。数字控制器和序列器可播放多达 1024 步的门序列。图 29.1.2 还显示了相位生成电路的示意图。DLL 将这些信号通过等延迟反相器缓冲器 (EDIB) 后,比较来自电压控制延迟线 (VCDL) 的第一个和第 31 个抽头的信号。这会将 CLK[0] 和 CLK[30] 锁定在 180°,并生成 33 个极性交替的等延迟时钟信号。使用 CLK[30] 而不是 CLK[32] 来确保在 PFD 或 EDIB 不匹配的情况下实现全相位覆盖,这可能导致锁定角低于 180°。一对 32b 解复用器用于选择相邻的时钟信号(即 CLK[n] 和 CLK[n+1]),开关和 EDIB 网络用于驱动具有可选极性的 PI。 PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。PI 单元由多路复用器和限流反相器组成。32 个单元并联组合,所选相位之间的权重由驱动多路复用器阵列的温度计编码的 31b 值设置(第 32 个反相器始终由 CLK[n] 驱动)。相位生成电路具有 11b 控制,可提供实现 0.5° 精度的裕度。图 29.1.3 显示了脉冲整形器原理图。它接收相移时钟并应用可编程幅度和持续时间的矩形包络。SW1 用于门控数字 CW 信号。然后,门控信号由一个电路缓冲和衰减,该电路由可变电阻器 R 0(16 个值,从 10 到 170kΩ)组成,通过 2:1 双调谐变压器连接到 50Ω 负载。该电路将可用功率降低了约 17 至 29dB,同时提供 50Ω 输出匹配并过滤脉冲频谱,为信号包络引入几纳秒的指数上升和下降时间,适用于大量子比特非谐性。R 0 、CP 和 CS 通过 SPI 总线进行编程,以进行静态预调谐。但是,提供了一个 0 至 18dB 衰减器电路,步长为 6dB,用于实时粗调幅度。输出端集成了 SW2,以提供额外的开-关隔离。
I.引言卫星通信系统由两个主要细分市场组成,即空间段和地球或地面站。地面站系统与空间中的卫星协调通信过程。在少数情况下,小地面站系统可以建在海上的大型船上,也可以在飞机上用于移动通信服务。地面站由各种电子通信系统组成,包括用于传输和接收信号的天线系统。低噪声块向下转换器,高功率放大器(HPA)发射器,功率从几瓦到一百千瓦时,具体取决于容量和法规,上下转换器,调制解调器,编码器,编码器,多路复用器,控制和跟踪系统,用户端子的接口。这些系统进一步分为各个部分,例如操作,控制,射频,网络部分,具有不同的功能[1]。图1显示了不同类型的地面站的简单视图。
如时序图 (图 2) 所示,MUX 通道选择和 A/D 转换采用流水线方式,以最大程度地提高转换器的吞吐量。转换过程从选择所需的多路复用器通道对开始。将逻辑高电平应用于 LTC1390 的 CS 输入,通道对数据在 5MHz 时钟信号的上升沿上被时钟输入到每个数据 1 输入中。然后将芯片选择 MUX 拉低,锁存通道对选择数据。然后将选定 MUX 输入上的信号应用于 LTC1410 的差分输入。在 LTC1410 的转换启动输入 CONVST 被拉低之前 700ns,芯片选择 MUX 被拉低。这对应于 LTC1390 的 MUX 开关完全打开所需的最大时间。这可确保在 LTC1410 的 S/H 捕获其样本之前,输入信号已完全稳定。