肿瘤切除术中神经活动的监测、神经外科手术[6–8]中慢性植入物中癫痫病灶的识别[9–11]以及神经假体。[12–17]为了在保留大量任务相关信息的同时尽量减少侵入性,人们对皮层电图 (ECoG) 和微皮层电图 (μ ECoG) 技术进行了广泛的研究。[18–22]对于皮层内微电极,由于与信号源的距离增加,ECoG 和 μ ECoG 都表现出一些固有的局限性。[23]此外,由于电极小型化和随之而来的阻抗增加,μ ECoG 会受到噪声增强的影响。[24,25]在这种情况下,脑记录将从原位第一级信号放大策略中受益匪浅。在克服这些限制的各种策略中,半导体技术已用于神经生理学应用。无机场效应晶体管已成功证明可作为体外生物电活动传感器,[26–28] 但它们在体内的应用受到无机半导体的化学和机械特性的限制,尤其是暴露于水环境时。[29] 这使得无机晶体管沦为微电极集成多路复用器的角色。[30]
摘要:加法是数字计算机系统的基础。本文介绍了三种基于标准单元库元素的新型门级全加器设计:一种设计涉及 XNOR 和多路复用器门 (XNM),另一种设计利用 XNOR、AND、反相器、多路复用器和复合门 (XNAIMC),第三种设计结合了 XOR、AND 和复合门 (XAC)。已与许多其他现有的门级全加器实现进行了比较。基于对 32 位进位纹波加法器实现的广泛模拟;针对高速(低 V t )65nm STMicroelectronics CMOS 工艺的三个工艺、电压和温度 (PVT) 角,发现基于 XAC 的全加器与所有门级同类产品相比都具有延迟效率,甚至与库中可用的全加器单元相比也是如此。发现基于 XNM 的全加器具有面积效率,而基于 XNAIMC 的全加器在速度和面积方面与其他两种加法器相比略有折衷。I. 简介二进制全加器通常位于微处理器和数字信号处理器数据路径的关键路径中,因为它们是几乎所有算术运算的基础。它是用于许多基本运算(如乘法、除法和缓存或内存访问的地址计算)的核心模块,通常存在于算术逻辑单元和浮点单元中。因此,它们的速度优化对于高性能应用具有巨大的潜力。1 位全加器模块基本上由三个输入位(例如 a、b 和 cin)组成并产生两个输出(例如 sum 和 cout),其中' sum'指两个输入位'a'和'b'的总和,cin 是从前一级到这一级的进位输入。此阶段的溢出进位输出标记为“ cout ”。文献 [1] – [10] 中提出了许多用于全加器功能的高效全定制晶体管级解决方案,优化了速度、功率和面积等部分或所有设计指标。在本文中,我们的主要重点是使用标准单元库 [11] 中现成的现成组件实现高性能全加器功能。因此,我们的方法是半定制的,而不是全定制的。本文主要关注逻辑级全加器的新颖设计,并从性能和面积角度重点介绍了与许多其他现有门级解决方案的比较。从这项工作中得出的推论可用于进一步改进晶体管级的全加器设计。除此之外,本文还旨在提供教学价值的附加值。本文的其余部分组织如下。第 2 节介绍了 1 位二进制全加器的各种现有门级实现。第 3 节提到了三种新提出的全加器设计。第 4 节详细介绍了模拟机制和获得的结果。最后,我们在下一节中总结。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
电阻抗断层扫描 (EIT) 是一种新兴的成像技术,在许多领域都具有巨大潜力,尤其是在功能性脑成像应用方面。高速、高精度的 EIT 系统可以应用于多种医疗设备,用于诊断和治疗神经系统疾病。在这项研究中,EIT 算法和硬件得到了开发和改进,以提高重建图像的准确性并缩短重建时间。由于多路复用器设计的限制,EIT 测量会受到开关周期内充电和放电的强烈电容效应,大约每 1280 个样本(10 毫秒采样)有 300 到 400 个样本。我们开发了一种算法,可以选择性地选择处于稳态的数据。这种方法提高了信噪比,并产生了更好的重建图像。我们开发了一种有效同步数据起点的算法,以提高系统速度。本演讲还介绍了基于德州仪器定点数字信号处理器 - TMS320VC5509A 的 EIT 系统硬件架构,该处理器成本低,未来在社区中具有很高的普及潜力。为了提高运行速度,我们建议 EIT 系统使用德州仪器的 Sitara™ AM57x 处理器。
网络技术:STM-1 (OC-3) 分析仪光纤网络技术::路由器:VoIP 数据包生成和数据包扫描设置:温度稳定光纤 Cisco 2600/2500/1700 系列协议应用程序开发工具包源模块:交换机::WDM 多路复用器 Cisco2950/1900 系列 Computer Associates Inc 实验室:熔融光纤耦合器 Intrasys 交换机:CA Unicenter 网络和系统:基于 PC 的光功率计 D-Link 交换机管理:STM-1 (OC-3) 分析仪 Cisco Pix 防火墙:515 系列:CA Unicenter 网络性能:光纤终端套件 Boson 和 RouterSim 模拟器选项网络管理和安全电信技术:无线技术:技术::逻辑分析仪:Linksys Wireless-G 路由器:IP 流量测试和测量:数字存储示波器:Linksys Wireless-G 桥接软件:ZTI Inc:GL通信::CDMA 演示器:Checkpoint Safe@Office 400W Dual Ultra T1 / E1 分析仪:GSM 演示器系列设备 ISDN 分析仪:GPS 演示器:Cisco Pix 防火墙:515 系列 SS7 分析仪:逻辑分析仪 ATM 分析仪:数字存储示波器 GSM 分析仪:高级模拟软件的 Trau 分析仪
• QML P 类抗辐射性能保证 (QMLP-RHA) 等级 • 采用小型 SOT-23 封装 • 辐射性能: – 单粒子闩锁 (SEL) 免疫 65MeV-cm 2 /mg – 总电离剂量 (TID) 抗辐射性能保证 (RHA) 高达 100krad (Si) • 支持国防、航空航天和医疗应用 – 单一受控基线 – 一个制造、装配和测试站点 – 金线 – NiPdAu 引线表面涂层 – 可在军用 (-55°C 至 125°C) 温度范围内使用 – 延长产品生命周期 – 产品可追溯性 – 增强型塑封材料,降低排气量 • 低失调电压:±125µV • 低噪声:1kHz 时为 10.8nV/√Hz • 高共模抑制:130dB • 低偏置电流:±10pA • 轨到轨输入和输出 • 宽带宽:4.5MHz GBW • 高压摆率:21V/µs • 高电容负载驱动:1nF • 多路复用器友好型/比较器输入 • 低静态电流:每个放大器 560µA • 宽电源电压:±1.35V 至 ±20V,2.7V 至 40V • 强大的 EMIRR 性能:输入和电源引脚上的 EMI/RFI 滤波器
摘要 — 我们为 COMPASS ++ /AMBER 实验提出了一种新的数据采集系统,该系统是智能 FPGA 数据采集框架的进一步发展。该系统的最大吞吐量为 5 GB/s。我们设计该系统以提供自由运行的连续读出,这使我们能够通过将决策延迟到处理数据的硬件滤波器和高级触发器阶段来实现复杂的数据过滤。该系统包括前端卡、全数字硬件滤波器、数据多路复用器、时间片生成器和高级触发器场。数据选择和数据组装需要具有不同粒度的数据流时间结构,适用于不同的探测器。我们将探测器数据单位定义为图像,并将时间窗口内来自不同探测器的图像组合到时间片中。通过根据时间片路由数据,我们可以平均数据速率并轻松实现可扩展性。让我们实现这些目标的主要组件是高性能且经济高效的硬件时间片生成器。时间片构建器按时间组合流数据,由数据切换和溢出缓冲区构建组成。可扩展的架构使我们能够提高系统的吞吐量并实现真正的无触发操作模式。
带有光波导的分子发光材料在发光二极管,传感器和逻辑门中具有广泛的应用前景。但是,大多数传统的光学波导系统都是基于脆性分子晶体,该晶体限制了在不同的应用情况下的柔性设备的制造,运输,存储和适应。迄今为止,在同一固态系统中具有较高柔韧性,新型光学波导和多端口色调发射的光功能材料的设计和合成仍然是一个开放的挑战。在这里,我们已经构建了新型的零维有机金属卤化物(Au-4-二甲基氨基吡啶[DMAP]和DMAP),对于光学波导而言,弹性很小,损失系数很少。对分子间相互作用的理论计算表明,2分子晶体材料的高弹性是原始的,它是从其人字形结构和滑移平面的。基于2个晶体的一维柔性微脚架和Mn-Dmap的2维微板,具有多色和空间分辨光学波导的异质界面。杂合的形成机理是基于表面选择性生长,因为接触晶体平面之间的低晶格不匹配比。因此,这项工作描述了具有高灵活性和光学波导的基于金属壁的晶体异质结的首次尝试,从而扩展了用于智能光学设备(例如逻辑门和多路复用器)的传统发光材料的前景。
近年来,随着互联网数据流量的急剧增加,在数据中心实现高速低成本的光传输技术具有巨大的商业价值[1-5]。为了提高互联数据传输的速度,在单个硅芯片上集成半导体激光二极管、光调制器、多路复用器、波导、光电探测器等的 PIC 的构想应运而生[6-8]。此外,在硅平台上集成 PIC 或光电集成电路 (OEIC) 的硅光子学因具有低成本、大面积衬底的优势以及与先进制造和硅互补金属氧化物半导体 (CMOS) 制造技术的兼容性而引起了极大的兴趣[9]。与最先进的 InP 基 PIC [10-12] 相比,Si 基 PIC 被认为是另一种有前途的节能解决方案,它可以将收发器成本从目前每千兆比特每秒 (Gb/s) 输入/输出 (I/O) 带宽几美元降低到每 Gb/s 不到几美分 [13-15]。最近,尽管片外发光源具有高温性能和高发光效率的优势,但由于封装成本降低和光耦合效率提高,片上光源的重要性得到了强调 [16]。此外,片上光源具有在单个芯片上实现密集集成的潜力,并且在能效和可扩展性方面具有更好的性能。