垂直起降(VTOL)是无人机(UAV)的基本功能。VTOL一方面可以拓展和增强无人机的应用领域,但另一方面也使得无人机控制系统的设计更加复杂。控制系统设计中最具挑战性的需求是实现固定翼无人机对控制指令满意的响应敏锐度以及确保飞机模态通道有效解耦。本文在气动分析的基础上,建立了含有力和力矩的六自由度(6-DoF)模型,并通过计算流体力学(CFD)数值模拟进行气动分析。提出一种基于扩张状态观测器(ESO)的改进比例微分(PD)控制器来设计内环姿态控制,增强了无人机系统对内外部不确定性的抗干扰能力。建立无人机运动方程,将运动方程分解为纵向和横侧两个独立运动分量,设计小扰动条件下的外环控制律;提出一种纵向高度通道总能量控制系统(TECS),将速度控制与航迹控制分离;横侧轨迹跟踪采用L1非线性路径跟踪制导算法,提高曲线跟踪能力和抗风能力。实飞实验数据证明了该方法的有效性。最后,设计了一种控制律。
本文提出了一种用于柔性飞机同时进行轨迹跟踪和负载减轻的非线性控制架构。通过利用控制冗余,可以在不降低刚体指令跟踪性能的情况下减轻阵风和机动负载。所提出的控制架构包含四个级联控制环路:位置控制、飞行路径控制、姿态控制和最优多目标机翼控制。由于位置运动学不受模型不确定性的影响,因此采用非线性动态逆控制。相反,飞行路径动力学受到模型不确定性和大气扰动的干扰;因此采用增量滑模控制。基于 Lyapunov 的分析表明,该方法可以同时降低传统滑模控制方法的模型依赖性和最小可能增益。此外,姿态动力学为严格反馈形式;因此采用增量反步滑模控制。此外,还设计了一种新型负载参考生成器,用于区分执行机动所需的负载和过载负载。负载参考由内环最优机翼控制器实现,而过载负载由襟翼自然化,而不会影响外环跟踪性能。通过空间轨迹跟踪任务和阵风负载缓解任务验证了所提出的控制架构的优点
本文提出了一种用于柔性飞机同时进行轨迹跟踪和载荷减轻的非线性控制结构。通过利用控制冗余,在不降低刚体指令跟踪性能的情况下减轻了阵风和机动载荷。所提出的控制结构包含四个级联控制环路:位置控制、飞行路径控制、姿态控制和最优多目标机翼控制。由于位置运动学不受模型不确定性的影响,因此采用非线性动态逆控制。相反,飞行路径动力学受到模型不确定性和大气扰动的干扰;因此采用增量滑模控制。基于 Lyapunov 的分析表明,该方法可以同时降低模型依赖性和传统滑模控制方法的最小可能增益。此外,姿态动力学为严格反馈形式,因此采用增量反步滑模控制。此外,设计了一种新型负载参考生成器,以区分执行机动所需的负载和过载负载。负载参考由内环最优机翼控制器实现,而过载负载由襟翼自然化,而不会影响外环跟踪性能。通过空间冯·卡门湍流场中的轨迹跟踪任务和阵风负载缓解任务验证了所提出的控制架构的优点。
本文提出了一种用于柔性飞机同时进行轨迹跟踪和载荷减轻的非线性控制结构。通过利用控制冗余,在不降低刚体指令跟踪性能的情况下减轻了阵风和机动载荷。所提出的控制结构包含四个级联控制环路:位置控制、飞行路径控制、姿态控制和最优多目标机翼控制。由于位置运动学不受模型不确定性的影响,因此采用非线性动态逆控制。相反,飞行路径动力学受到模型不确定性和大气扰动的干扰;因此采用增量滑模控制。基于 Lyapunov 的分析表明,该方法可以同时降低模型依赖性和传统滑模控制方法的最小可能增益。此外,姿态动力学为严格反馈形式,因此采用增量反步滑模控制。此外,设计了一种新型负载参考生成器,以区分执行机动所需的负载和过载负载。负载参考由内环最优机翼控制器实现,而过载负载由襟翼自然化,而不会影响外环跟踪性能。通过空间冯·卡门湍流场中的轨迹跟踪任务和阵风负载缓解任务验证了所提出的控制架构的优点。
在背面金属化之前,晶圆会被减薄,因为基板是设备的功能部分。300 毫米/12 英寸晶圆要么减薄到约 200 微米厚,要么遵循所谓的 Taiko 晶圆研磨原理。在后一种情况下,硅晶圆由一个外部 Taiko 环和减薄的硅膜组成。对于 300 毫米/12 英寸晶圆,该膜会根据设备电压等级减薄到 60、90 或 120 微米。薄基板的热容量低,因此需要严格控制工艺温度。沉积过程中的温度对固有薄膜应力有显著影响。为了最大限度地减少晶圆弯曲,必须最大限度地减少金属层堆栈引入的应力。CLUSTERLINE® 采用特殊的卡盘设计,可控制晶圆温度而不会损坏正面。在标准应用中,使用凹陷卡盘配置。在这种经典设计中,晶圆在沉积过程中位于外环上,从而防止与设备表面接触。然而,尽管凹陷式卡盘是一种经济高效的解决方案,但由于缺乏主动卡盘,热耦合受到限制。因此,对于需要更严格温度控制的应用,独特的 BSM-ESC(用于背面金属化的静电卡盘)是首选。
溶血杆菌属。是各种植物种类的根际的常见细菌居民。然而,根际条件对生理学的影响仍相对研究。提供有关溶血杆菌行为的线索。在这个生态位中,我们在共同的合成生长培养基(LBA)上研究了从烟草根际(LBA)和含有植物根瘤菌(RMA)含有的成分的生长培养基上,从烟草根际(LBA)和含有的生长培养基上研究了capsici az78(az78)的生理学。RMA上AZ78菌落周围的光环的存在是与生长培养基成分差异有关的第一个可见效应,它与大型外环的形成相对应。与LBA相比,RMA中可用的营养量较低,与编码CAMP受体样蛋白(CLP)的基因表达更高,负责细胞运动和生物膜形成调节。RMA上的AZ78细胞运动是动的,配备了细胞表面附属物,并以嵌入密集的原纤维层的小组组织。与LBA相比,质谱成像的代谢分析表明,AZ78在RMA上产生的分析物的多样性增加。尤其是鉴定出具有抗生素活性的推定环状脂质肽,多环芳烃,多环芳烃,环状大酰酰胺和其他推定的次级代谢产物。总的来说,这项研究中获得的结果揭示了AZ78通过其移动,形成生物膜和释放二级代谢产物的能力在根际中繁衍生息的潜力。
收到日期:2020 年 1 月 15 日。接受日期:2020 年 3 月 15 日。最终版本:2020 年 5 月 25 日摘要本文提出了一种用于串联架构混合储能系统的非线性控制结构,该系统调节直流总线电压(输出电压)并确保电池电流满足电流斜率限制。提出的解决方案分为两个阶段,在第一阶段,电池连接到为辅助电容器供电的降压/升压转换器。在第二阶段,辅助电容器通过第二个降压/升压转换器连接到直流总线。两个转换器均使用级联控制系统进行调节,其中内环是电感器电流的滑模控制器,第一和第二转换器中的外环分别设计用于限制电池电流的斜率和调节直流总线电压。本文提供了控制器的设计过程,并通过电源系统在充电、放电和待机模式下的仿真结果验证了其性能。关键词:电池;电容器;降压/升压转换器;当前转换速率;滑模控制。概述 该文章涉及一系列非线性控制系统的结构,包括直流母线电压(电压)的张力控制和电池充电速度限制的控制科连特。解决方案是连接电池和降压/升压转换器以及辅助电容器。在第二个中,辅助电容器连接到直流总线和第二个转换器降压/升压。转换器使用级联控制系统、内部控制器、电感器模式、外部启动器和第二个转换器,以限制电池和电池的速度。 DC 巴士上的常规张力。本节阐述了控制装置的处理过程和仿真结果的验证,考虑了操作方式、卸载和操作方式中的操作能力系统。
引言:CC趋化因子受体5(CCR5)及NF-κB信号通路在炎症性肠病(IBD)的病理生理中起重要作用。前期我们合成了两条特异性与CCR5第一和第二个胞外环(分别为ECL1和ECL2)结合的多肽(GH肽和HY肽),并初步发现这两条肽对结肠炎有抑制作用。但这两条肽调控三硝基苯磺酸(TNBS)诱导的大鼠结肠炎的具体机制尚不清楚。本研究旨在进一步探讨CCR5结合肽在大鼠结肠炎中的作用及机制。材料与方法:用5%TNBS诱导实验性结肠炎。CCR5拮抗肽每天静脉注射一次,持续一周。通过组织学观察、实时定量PCR、Western印迹和相关性分析等方法观察CCR5结合肽对炎症细胞浸润和NF- κ B信号通路的影响。结果:给予GH和HY肽可减轻实验性结肠炎黏膜损伤,减少中性粒细胞、淋巴细胞和巨噬细胞的浸润(p < 0.05)。给予GH和HY肽后,NF- κ B相关基因p105、p100、IKK和TNF- α的表达降低(p < 0.01),TNF- α的蛋白水平以及IKK、I κ B α和p65的磷酸化也受到抑制。此外,CCR5拮抗肽可抑制p65的核转位。 Spear-man相关性分析显示炎症细胞的浸润与NF- κ B通路有显著相关性。结论:CCR5的ECL1和ECL2特异性结合拮抗肽通过调控NF- κ B信号通路抑制TNBS诱导的Sprague-Dawley大鼠结肠炎结肠黏膜中性粒细胞、淋巴细胞和巨噬细胞的浸润。
I.简介 制造新的或修改现有的飞行器是一个复杂且耗时的过程。工程师必须就飞行器配置和飞行控制设计做出决策,以确保满足系统级规范。对硬件的任何更改都非常昂贵且耗时。因此,在构建任何硬件之前尽可能地完成和验证设计非常重要。基于模型的设计使工程师能够在设计过程的早期阶段测试和验证他们的想法,此时对设计进行更改仍然相对容易且便宜。在本文中,我们使用一种新型轻型飞机设计的示例来介绍一种快速迭代飞行器几何配置和飞行控制设计的方法。本文介绍了稳定性和控制工程师在设计过程的早期阶段通常要经历的步骤。这些步骤包括:定义飞行器的几何形状、确定飞行器的空气动力学特性、创建模拟以验证性能以及设计飞行控制律。这些步骤中的每一个都可能是一项耗时的任务。在本文中,我们介绍了简化这些步骤并确保快速迭代设计的工具和技术。我们首先讨论一种基于飞行器几何形状确定飞行器空气动力学特性的方法。我们讨论美国空军数字数据汇编 (Datcom) 软件,并介绍 Digital Datcom 对我们特定飞行器配置的分析结果。然后,我们演示如何快速轻松地将从 Digital Datcom 获得的结果导入 MATLAB® 进行进一步分析。我们说明了对空气动力学稳定性和控制系数及导数的初步分析可以揭示有关飞行器性能和稳定性的信息。然后,我们将展示如何快速创建飞行器的模拟。我们将讨论运动方程的建模、作用于飞机的力和力矩的计算、传感器和执行器等飞行器部件的建模,以及大气、重力和风阵等环境影响的建模。我们将演示如何在模拟中使用 Digital Datcom 的空气动力学系数来快速计算作用于飞行器的空气动力和力矩。接下来,我们将讨论飞行控制设计技术。我们还展示了如何针对纵向飞行控制的具体示例有效地设计内环和外环控制器。以我们飞机的纵向控制设计为例,我们展示了如何轻松地线性化仿真模型,以及如何设计满足时域和频域规范的控制器。