利用大规模储能技术实现可再生能源的高效利用成为当今最热门的研究领域之一。1,2其中,钒氧化还原流电池(VRFB)具有容量设计灵活、循环寿命长、环境友好等优点,被认为是最有前途的大规模储能系统,目前已实现兆瓦时规模。尽管取得了巨大的成功,但其能量效率较低,无法与锂离子电池等其他电化学储能技术相媲美,寻找提高能量效率的方法至关重要。电极是钒离子氧化还原反应发生场所,是实现高效VRFB的关键。目前,石墨毡由于其在浓酸性条件下具有良好的稳定性和高导电性,被广泛应用于钒液流电池的电极材料。3 它们的催化活性低、比表面积小,不利于和促进
摘要。本文通过考虑布朗运动和多孔培养基在拉伸表面上考虑Sutterby Nanofluid,讨论了微生物活性的影响。嗜热效应是涉及平衡流体温度以产生改进结果的措施。我们将这些效果包括在模型中,以及其他一些参数,例如布朗运动和微生物活性。分层现象被考虑用于评估Sutterby Nanofluid水平片上热量的产生/吸收。在不可压缩的Sutterby纳米流体中进一步分析了多孔培养基和与微生物活性的化学反应。借助一些合适的相似性转换,我们模型的初始边界条件和管理部分微分方程被转换为普通微分方程和最终边界条件的耦合结构。光谱准共线化方法(SQLM)用于数值求解这些普通的微分方程,以评估我们模型中采用的各种参数的影响。分析了不同参数的图形表示,以获取流量,温度,溶质和微生物分布。还分析了身体感兴趣的系数,并显示出良好的结果。纳米流体参数的上升降低了流体的流量,同时增强了热分层现象的温度曲线和下降。该模型是聚合物熔体以及高聚合物分辨率的理想选择。Sutterby Nanofluid模型还结合了膨胀溶液和伪塑料的行为,这对各种工程过程和行业都有帮助。
图 3 | 3D 打印多孔导电陶瓷的结构分析。A 和 B,3D 打印多孔陶瓷的 SEM 图像。C,3D 打印多孔陶瓷的 TEM 图像,显示石墨烯渗透到多孔颗粒中。比例尺代表 50 纳米。D,BET-BJH 氮吸附等温曲线。E,孔径分布图。F,具有不同石墨烯/二氧化硅比率的 3D 打印样品的热导率测量。G,放置在热板上的 3D 打印 UB 标志的红外 (IR) 图像。该图像是在将样品在热板上放置 30 分钟后拍摄的。H,单轴压缩试验的应力-应变曲线。I,3D 打印样品的抗压强度摘要。经 SPS 处理的样品的抗压强度提高了 96.19%。
摘要:全球性问题之一是各种生物废弃物对环境的污染。要解决这个问题,必须回收利用生物废弃物。无废弃技术也是节省可耗尽原材料的一种方式。电化学能源研究是目前离网能源发展最快的领域。电化学电容器可以长时间运行而不改变性能,尺寸更小,机械强度高,工作温度范围宽。这些特性是有效的节能装置。因此,超级电容器广泛应用于各个行业。本综述讨论了生物废弃物衍生的活性炭和碳-氧化锰(AC-MnO 2)基超级电容器电极的获取方法和特性。
回顾性分析我院2016年至2019年实施的颅骨修补术,对年龄、性别、诊断、手术材料、并发症进行分类,常规进行脑CT检查,创伤、肿瘤、缺血性、出血性中风、脑内血肿纳入研究,因颅颌面创伤行重建手术者排除。术后患者控制至少1年。在术前准备阶段,对每位患者进行脑CT检查,必要时进行脑磁共振成像观察。调查每位患者是否有伤口部位感染或全身感染灶,感染灶解决后至少1个月计划手术。开颅减压术中保留骨骼的患者骨瓣常规一次性置入腹部皮下组织,涉及额窦区的开颅手术用骨蜡和患者骨骼封闭额窦口,切除窦黏膜,开颅额窦。保存在腹部皮下脂肪组织内的骨瓣在开颅手术同期取出,使用前用含万古霉素的生理盐水彻底冲洗。自体骨、甲基丙烯酸甲酯和多孔聚乙烯植入物用粗vicryl缝线固定在颅骨上为标准。钛网用微型螺钉固定在颅骨上。
采用一步水热法制备碳化钛/还原氧化石墨烯 (Ti 3 C 2 T z /rGO) 凝胶。该凝胶具有高度多孔结构,表面积为 ~224 m 2 /g,平均孔径为 ~3.6 nm。反应前体中 GO 和 Ti 3 C 2 T z 纳米片的含量不同,可产生不同的微观结构。Ti 3 C 2 T z /rGO 凝胶的超级电容器性能随成分而发生显著变化。比电容最初随 Ti 3 C 2 T z 含量的增加而增加,但在高 Ti 3 C 2 T z 含量下无法形成凝胶。此外,电容保持率随 Ti 3 C 2 T z 含量的增加而降低。与纯 rGO 和 Ti 3 C 2 T z 相比,Ti 3 C 2 T z /rGO 凝胶电极表现出增强的超级电容器性能,具有高电位窗口 (1.5 V) 和大比电容 (920 F/g)。 rGO 的 EDLC 与 Ti 3 C 2 T z 的氧化还原电容的协同效应是超级电容器性能增强的原因。用 Ti 3 C 2 T z /rGO 构建了一个对称双电极超级电容器单元,其面积电容非常高(158 mF/cm 2 ),能量密度大(~31.5 μW h/cm 2
这项工作致力于证明在非努力理论中应用自然语言处理理论中获得的信息处理公式的可能性。这些公式是在计算机实验中获得的,用于通过更改触发此运动的信息量来建模材料对象的运动和相互作用。定义了实验研究的假设,客观和任务。开发了用于执行典范的方法和软件工具。为了比较语音生产过程中人大脑过程中的过程的不同结果,采用了一系列方法来计算自然语言文本片段序列的估计,包括基于线性近似的方法。实验证实,在非力量相互作用理论中获得的信息处理公式反映了语言形成的过程。证明,提供的方法可以成功地用于创建反应性人工智能机系统。实验性并在这项工作中提出的实际结果构成了非强制性(信息)交互公式通常是有效的。
线粒体被称为细胞的“动力工厂”,在非癌细胞的能量产生、细胞维持和干细胞调节中发挥着关键作用。尽管线粒体非常重要,但使用药物输送系统靶向线粒体仍面临重大挑战,因为存在多种障碍,包括细胞摄取限制、酶降解和线粒体膜本身。此外,目标器官中的障碍以及由网状内皮系统等生理过程形成的细胞外障碍,会导致用于线粒体药物输送的纳米粒子被快速消除。克服这些挑战导致了各种策略的发展,例如使用细胞穿透肽进行分子靶向、基因组编辑和基于纳米粒子的系统,包括多孔载体、脂质体、胶束和 Mito-Porters。多孔载体由于其孔径大、表面积大和易于功能化而成为特别有前途的药物输送系统候选者,可用于靶向线粒体。根据孔径,它们可分为微孔、中孔或大孔,并根据尺寸和孔隙均匀性分为有序或无序。使用多孔载体靶向线粒体的方法有多种,例如用聚乙二醇 (PEG) 进行表面改性、加入三苯基膦等靶向配体以及用金纳米粒子或壳聚糖覆盖孔隙以实现受控和触发的药物输送。光动力疗法是另一种方法,其中载药多孔载体产生活性氧 (ROS) 以增强线粒体靶向性。功能化多孔二氧化硅和碳纳米粒子的形式取得了进一步的进展,它们已证明具有有效向线粒体输送药物的潜力。本综述重点介绍了利用多孔载体的各种方法,
由于其廉价的生产,高电导率,掺杂的简单性以及增强的亲水性特性,多孔碳泡沫具有很大的潜力用于储能和转换应用。在这项研究中,氧化石墨烯(GO)被成功地嫁接到碳泡沫上,并在接头的帮助下使用简单的浸入涂层技术。3D多孔碳泡沫是使用商业三聚氰胺泡沫的一步碳化产生的。使用XRD,FTIR,BET,TGA,XPS,RAMAN和FESEM来表征该材料,以确认其结构,功能组,表面积,热稳定性和形态特征。样品的应力应变测试是在电子通用测试机上进行的。这些泡沫具有足够的表面积(99 m 2 /g),高水平的C含量(79.15%)和出色的可压缩性。此外,作为针对不同应用的建议材料,这种独特的GO移植多孔碳泡沫也倾向于在不同的研究领域提供出色的性能。总而言之,由于直接的准备过程和引人入胜的特性,GO移植的多孔碳泡沫在不同应用方面具有出色的前景。关键字:储能;氧化石墨烯;三聚氰胺泡沫;多孔碳泡沫