Loading...
机构名称:
¥ 1.0

人类文明的进步取决于各种材料的发展。现代科学的建立导致了合成材料的快速发展。但是,迫切需要增加能源需求和环境污染,需要寻找新材料来解决能源和环境危机。碳本质上是极富丰富的元素,为地球上所有生命提供了基础(Li等,2008; Toth等,2016)。碳原子在核外有六个电子,其最外面的电子排列为2 s 2 2 p 2,显示出强大的形成共价键的能力(Krueger,2010)。多孔碳材料具有优势,例如化学稳定性,低密度,高导热率,高电导率和高机械强度(Gallo,2017)。多孔碳材料还具有较大的特定表面积,可调节的孔径和功能组,并且可以以相对较低的成本从多种前体制备。近年来,许多研究人员致力于多孔碳的合成和应用(Ang,2019; Liu,2019; Liu,2020a; Hwang,2020; Raj,2021)。取决于孔径分布,碳材料的孔结构可以分为三类,即微孔(孔径<2 nm),中孔(2 nm <孔径<50 nm)和大孔(孔径> 50 nm)(VU,2012年)。多孔碳材料的孔结构的大小对它们在实际应用中的性能产生了重大影响。重要的是,进一步讨论了碳材料的未来方向。由于这些优势,碳材料被广泛用于吸附范围(HE,2019年),催化(Dong等,2020)和储能(Peng,2019年)。本文主要引入碳材料的合成和应用,并描述了当前碳材料的主要改进思想(图1)。

多孔碳材料的合成和应用的进步

多孔碳材料的合成和应用的进步PDF文件第1页

多孔碳材料的合成和应用的进步PDF文件第2页

多孔碳材料的合成和应用的进步PDF文件第3页

多孔碳材料的合成和应用的进步PDF文件第4页

多孔碳材料的合成和应用的进步PDF文件第5页