1。treaster,A。L.和Yocum,A。M.,1978。五孔探针的校准和应用。技术。REP。 2。 Yasa,T。和Paniagua,G.,2012。 \多孔探测数据处理的鲁棒过程。 流量测量和仪器,26,pp。 46-54。REP。 2。Yasa,T。和Paniagua,G.,2012。\多孔探测数据处理的鲁棒过程。流量测量和仪器,26,pp。46-54。
缓解温室气体排放,尤其是CO 2,突出了对有效CO 2捕获技术的关键需求。这是由于它们在气候变化中的重要作用及其对全球生态系统和人类福祉的深远影响。活化的碳已经成为CO 2捕获的有前途的候选者。在这项研究中,活化的碳是由在700 - 1100℃范围内在各种温度下碳化的木屑合成的,随后使用CO 2激活。通过SEM,FESEM,XRD,TGA和FTIR技术进行了全面的特征,以评估这些特性。结果表明,在1000℃下的碳化产生了带有高级和微孔结构的活化碳,其表面积,孔体积和孔径分别为1651.34 m 2 /g,0.69 cm 3 /g,分别为0.69 cm 3 /g和<1.76 nm。值得注意的是,这种活化的碳在25℃和1 bar时表现出有希望的CO 2摄取9.2 mmol/g。此外,超过10个周期的显着可回收性证明了其实用CO 2捕获应用的潜力。此外,合成的活性碳在N 2(85/15 V/V)上表现出高选择性的高选择性,在1 bar和25°C下达到40.2,这些发现表明了AS-AREG IACKERACTAICTAICTACTIED CARBON作为所需的候选候选和选择性CO 2捕获的可行性,以促进CO的努力,从而促进了Emigation co的努力。
骨组织对于机械功能,保护和造血至关重要。1,2这些特征源于其独特的碳酸羟基磷灰石(HAP)[CA 10(PO 4)6(OH)2]嵌入在胶原蛋白(主要是I),Proteoglycans和Glamcoprotins的细胞外基质(ECM)中。虽然能够再生,但骨组织愈合的限制是由于临界大小的缺陷而造成创伤性损伤,手术切除或先天异常的临界。3骨组织愈合也受到高龄,骨关节炎和放射学治疗的阻碍。已有许多产品被开发用于治疗和治愈关键尺寸的骨缺损,并在表1中举例说明了。经常采用生物移植方法,其中活组织移植物掺入周围的组织中。自动锻炼仍然是“黄金标准”,每年执行超过200万骨自体移植。4
摘要:在热量和传质应用领域,非牛顿流体被认为起着非常重要的作用。本研究检查了可渗透锥和板上在可渗透锥和板上的磁性水力动力学(MHD)生物感染的眼环流体流动,考虑到粘性耗散(0.3≤EC≤0.7),均匀的热源/水槽(-0.1≤q0 q0≤0.1),以及激活能量(-0.1≤q0 q0≤0.1),激活能量(−1 ucivation usitation(-1)。这项研究的主要重点是检查MHD和孔隙率如何影响微生物的流体中的热量和传质。相似性转换(ST)将非线性偏微分方程(PDE)更改为普通微分方程(ODE)。凯勒盒(KB)有限差方法求解了这些方程。我们的发现表明,添加MHD(0.5≤M≤0.9)和孔隙率(0.3≤γ≤0.7)效应可改善微生物扩散,从而提高质量和传热速率。我们将发现与先前研究的比较表明它们是可靠的。
摘要:使用Vo 2在智能窗口中进行辐射冷却 - 一种动态的热管理材料,由于其太阳能和发射率可调性,因此具有增强建筑物节省能源的潜在兴趣。然而,目前缺乏与多层系统中VO 2薄片微结构对发射率调节的影响有关的研究。本研究通过操纵VO 2薄膜中的孔隙率来处理VO 2/Znse/iTo/glass Fabry- perot(F – P)型腔系统的热色素和发射率性能。该设备是通过商业上可行的物理蒸气沉积方法(例如溅射和热蒸发)制造的,最适合批量生产。用多孔VO 2的优化样品提供了增强的长波红外(LWIR)发射率≥0.4≥0.4≥0.4,与密集的VO 2相比,保持高可见透明度T LUM(AVG)约为41%。进行有限的差异时间域(FDTD)模拟,以进一步了解效果
摘要:本研究论文探讨了用于高性能锂离子电池的多孔活性炭阳极的复杂领域,以满足对先进储能系统日益增长的需求。研究首先深入研究各种合成方法,包括物理和化学活化以及混合方法,旨在优化孔隙率和表面化学。对结构特征的详细研究包括表面积、孔分布、形态和表面化学。先进的显微镜技术和表征工具提供了对结构特征和电化学性能之间复杂相互作用的洞察。走出实验室,本文探讨了多孔活性炭阳极的潜在应用。在电动汽车中,这些阳极有望提高能量和功率密度,这是广泛采用电动交通的关键因素。对于便携式电子设备,重量轻和安全性提高使其成为有吸引力的选择。此外,该研究评估了将多孔活性炭阳极集成到电网规模储能中的可行性,有助于提高可再生能源整合的稳定性和可靠性。解决了环境问题,评估了多孔活性炭阳极的可持续性和可回收性。本文最后总结了主要发现,强调了多孔活性炭在推进锂离子电池技术方面的重要性,并提出了未来的研究方向以克服当前的挑战。大量的参考文献强调了该研究的跨学科性质,结合了多种来源,提供了该领域的全面概述。关键词:电池技术、形态、显微镜、多孔、活性、可再生。1.简介:随着世界向可持续能源解决方案转型,锂离子电池 (LIB) 在为电动汽车、可再生能源存储和便携式电子设备提供动力方面发挥着关键作用。传统阳极材料(例如石墨)在容量、循环稳定性和倍率能力方面受到限制。多孔活性炭源自多种前体,由于其高表面积、可调节的孔隙率和出色的导电性,为解决这些挑战提供了一种创新的解决方案。这些本研究的第一部分深入研究了花生壳活性炭的制备和开发,强调了多级多孔结构的创建。同时,该研究提出了一种从食物垃圾碎屑生物质中生产食物垃圾活性炭(FAC)的可扩展方法,重点介绍了其物理化学特性和多级多孔形态。
Johnny Lam是FDA生物制品评估与研究中心的治疗产品办公室的生物医学工程师,在那里他既有铅产品审查和研究活动。Johnny的主要研究兴趣涉及研究基于复杂的细胞疗法以及其产品质量如何与功能相关的生物活性相关。他的研究着重于广泛的微生理系统的开发和适应,作为评估各种细胞类型的各种功能结果的平台,以提高制成细胞产品的质量和效力。Johnny获得了博士学位。在2015年的赖斯大学(Rice University)的生物工程中,他在那里开发并评估了可注射的多层水凝胶复合材料,用于细胞和受控生长因子递送,用于体内骨科组织修复。Johnny获得了博士学位。在2015年的赖斯大学(Rice University)的生物工程中,他在那里开发并评估了可注射的多层水凝胶复合材料,用于细胞和受控生长因子递送,用于体内骨科组织修复。
摘要:最近出现了几种合成方法,将高表面积固态有机骨架材料开发成具有永久孔隙率的自由流动液体。这些多孔液体 (PL) 材料的流动性使它们在某些储存和运输过程中具有优势。然而,大多数基于骨架的材料需要使用低温来储存弱结合气体(例如 H 2 ),而在该温度下 PL 会失去流动性。基于共价有机骨架 (COF) 的 PL 可以在接近环境温度的条件下与 H 2 可逆地形成稳定的复合物,这将代表气体储存和运输应用的有希望的发展。我们在此报告一种基于负载 Cu(I) 的 COF 胶体的具有这些卓越特性的材料的开发、表征和评估。我们的合成策略需要使用原子转移自由基聚合 (ATRP) 来定制条件以在 COF 胶体周围生长坚固的聚(二甲基硅氧烷)-甲基丙烯酸酯 (PDMS-MA) 涂层。我们展示了对胶体COF涂层厚度的精准控制,并通过透射电子显微镜和动态光散射进行了量化。随后,将涂覆的COF材料悬浮在液体聚合物基质中,制成PL。CO 2 等温线证实,涂层在自由流动液体中保留了COF的总体孔隙率;而采用漫反射红外傅里叶变换光谱 (DRIFTS) 进行的CO吸附测量证实了Cu(I)配位点的保留。随后,我们使用DRIFTS和程序升温脱附测量评估了基于Cu(I) − COF的PL中的气体吸附现象。除了证实这些材料可以在温和制冷温度下或接近温和制冷温度下进行H 2 传输外,我们的观察还表明,H 2 扩散受到涂层和液体基质的玻璃化转变温度的显著影响。后者结果强调了PL在通过涂层成分调节气体扩散和储存温度方面的另一个潜在优势。
1. 简介 氨因其高能量密度和碳中性而被视为未来有前途的绿色能源。然而,最大的挑战仍然是从丰富但间歇性的可再生能源中更有效地生产氨。1 在传统的氨合成中,氨通过冷凝器分离,这是能源密集型的。7 因此,改善氨合成的一个重要方面是在循环之前用固体吸收剂有效地分离氨。最近,已经提出了几种材料作为氨分离的固体介质,其中金属卤化物似乎是最可行的选择,通过协同吸收氨。12 在本文中,研究了块状氯化镁以及负载在多孔载体上的氯化镁的氨容量。