此次评估的主要目标是了解支持国防、情报、民用和商业航天领域产品和服务开发、生产和维持的复杂供应链网络。这些数据还将用于了解美国航天工业的多层结构、其相互依赖性以及各项目和机构之间供应商和产品的共性。从历史上看,美国政府对航天工业基础较低层级面临的问题和挑战的了解有限。通过本次调查收集的数据,各机构将获得更好的信息,以制定有针对性的规划、收购和投资战略,确保该行业能够支持关键的国防和民用任务和计划。此外,本次调查将使您能够向美国政府展示贵组织的独特技能和能力。
硅藻土、26 – 28 海泡石、29 凹凸棒石 30,31 和膨胀珍珠岩 32,33 也被用作支撑基质。膨润土具有多层结构,是一种常见的工业粘土,例如蒙脱石族粘土矿物。膨润土因其良好的物理和化学性质,被广泛用作功能填料、粘结剂、触变剂和催化剂。此外,膨润土具有良好的化学和热稳定性、优异的吸附特性和低廉的价格,使其适合于合成形状稳定的复合 PCM。在本文中,通过真空浸渍法制备了一种由 LA/Na-bentonite-1 制成的新型复合 PCM,它具有高潜热存储能力和适合节能系统的相变温度。以天然膨润土和 LA 为支撑材料
移动设备、电动汽车、无人机和无线自主机器人的使用范围不断扩大,推动了对各种电池技术的需求增加。虽然每块电池的设计都是为了满足特定应用的需求,但所有电池都必须重量轻、结构紧凑、使用和存储时使用寿命长,并在运行时输出相对稳定的电压。虽然可以使用各种材料和工艺以多种方式实现这些目标,但许多电池设计使用多层结构来满足如此苛刻的性能要求。不幸的是,卷绕或堆叠成多层结构的材料中的小瑕疵或缺陷往往会随着每一层而累积,有可能在最终组装中变成更大甚至灾难性的缺陷。因此,检查是关键。
摘要 Global Foundries 的 22FDX 技术是一种商业化的尖端集成电路制造工艺。该工艺结合了 22 nm 的典型最小栅极长度和 FD-SOI(全耗尽绝缘体上硅)多层结构。这些技术特性允许自适应体偏置、超低电压供电和超低泄漏,从电路应用的角度来看,这些特性有利于节能的射频信号传输、高性能计算和强大的 MRAM(磁阻随机存取存储器)。因此,该技术非常适合克服当前用于高速和低功耗 AMS(模拟和混合信号)应用的产品解决方案。特别是,SOI 技术特性可确保免受单粒子闩锁的影响。
通过调整它们的不对称性[12–14]、成分[6,15]和宽度[16],已经产生了在红外波长下实用的可调结构。[12,14] Gurnick 和 De Temple [17] 首次通过在 Al x Ga 1 − x As 层中生长不对称 Al 成分梯度来破坏中心对称性,在多层结构中观察到了设计的二阶光学非线性。后续实验在 III-V 半导体 QW 中设计了光学非线性,例如可调谐发射器 [2,15,18] 和光开关设备。[6] 然而,它们的二阶非线性磁化率 MQW (2) χ 的实验值尚未见报道。最近人们对在复杂 QW 系统中设计大型光学二阶非线性的兴趣 [19–21] 促使及时系统地研究量化 χ (2)。工程设计中的挑战之一
摘要 - 在本文中,我们研究了基于多层结构(ML)的创新卵子阈值开关选择器(OT)。多亏了物理化学分析和电特性,我们显示了如何通过每个单独的层化学计量,厚度和接口的工程来调整MLS的性质和结构。ge/n掺杂的MLS OT,从而揭示了Asepososed材料中存在的结构特征以及接口处的单个层之间的强相互作用。我们证明了通过共扩散技术实现的电气参数的可变性wrt标准OT的可变性,并且MLS OTS的高耐力能力高达2·10 9以上,具有稳定的Na泄漏电流。此外,我们还显示了GE-N键在400℃的OT热稳定性中发挥着重要作用,以及如何在ML OT中更容易调节它们。这些发展为通往新的OTS材料及其工程的道路铺平了道路,从而确保了高温稳定性和对电气表演的最佳调整。
嵌合体状态是出现在非局部耦合的相同混沌时间离散映射或时间连续振荡器网络中的部分同步模式的一个有趣例子。它们由空间共存的相干(同步)和非相干(去同步)动态域组成。我们表明,在各种网络拓扑(如一维环形网络、准分形连通性、二维晶格或多层结构)和不同的动态映射中,出现了包括嵌合体在内的大量部分同步场景。特别是,我们研究了逻辑映射、Hénon 映射和 Lozi 映射。通过分析时空动力学对耦合范围和强度的依赖性,我们发现了通过嵌合态从相干性到完全不相干性的转变的动态分叉场景,并回顾了数值和分析方法 [1-5]。
嵌合体状态是出现在非局部耦合的相同混沌时间离散映射或时间连续振荡器网络中的部分同步模式的一个有趣例子。它们由空间共存的相干(同步)和非相干(去同步)动态域组成。我们表明,在各种网络拓扑(如一维环形网络、准分形连通性、二维晶格或多层结构)和不同的动态映射中,出现了包括嵌合体在内的大量部分同步场景。特别是,我们研究了逻辑映射、Hénon 映射和 Lozi 映射。通过分析时空动力学对耦合范围和强度的依赖性,我们发现了通过嵌合态从相干性到完全不相干性的转变的动态分叉场景,并回顾了数值和分析方法 [1-5]。
摘要:双曲超材料的未来应用需要具有替代超薄导电/电介质膜的材料堆栈,这些薄膜具有良好的厚度均匀性和降低的粗糙度。在这项工作中,使用田口方法优化了铝的脉冲直流磁控溅射技术,以制造具有改进的粗糙度水平的铝膜。进行的结构表征证明了较小的铝畴和更好的表面均匀性。优化的工艺用于制造 Al / HfO x 多层结构作为超材料介质。在紫外/可见光范围内对所制造的结构进行了光学表征。所提出的发现证明了所检查堆栈的有效反射率的可调谐性效应。所提出的结果对于未来基于双曲超材料的新型光子装置中的多层结构的应用很有希望。
I.引言已经开发了许多用于沉积高质量YBCO薄膜[1]的技术[1],例如真空蒸发,激光消融,化学蒸气沉积,磁控溅射[2,3]等对高温超导膜沉积的发展和理解在很大程度上有助于在低温电信设备中应用,例如低通滤波器,延迟线和微波通信的天线,并生产在数字电路和鱿鱼中有用的Josephson连接。所有技术和应用都将取决于大型薄膜廉价生产的成功。尤其是越野膜的生长,多层人士仍然是一个非常复杂的事情。由于存在几种固有的物质问题,例如短相干长度,各向异性,低临界电流密度和化学计量学,因此该过程变得复杂。同样,在薄膜中,元素从底物扩散到膜到膜以及相邻层是多层结构中的另一个问题。