随着现代材料应用(例如微电子、传感器、执行器和医疗植入物)的尺寸不断减小,量化材料参数变得越来越具有挑战性。具体而言,解决系统的各个组成部分(例如多层结构中的界面或埋层)成为一个重要课题。本文展示了一种基于扫描电子显微镜中的原位微悬臂测试来评估 Cu-WTi-SiO x -Si 模型系统不同界面的断裂参数的技术。相对于感兴趣的界面定位初始缺口位置可以选择不同的裂纹路径,而额外叠加的正弦信号允许连续测量刚度变化,从而对实际裂纹扩展进行实验测量。因此,我们对 Cu 和 WTi 之间的界面、块体 WTi 以及 WTi 和 SiO x 之间的界面实现了连续的 J-D 曲线测量。这种新方法的局部性质使其普遍适用于测试特定界面。
摘要:腐蚀识别和修复是飞机维护中确保结构完整性的重要任务。关于机身搭接接头,通常,目视检查后会采用非破坏性方法,这非常耗时。大面积目视检查不仅存在主观性,而且腐蚀检测概率也存在差异,机身结构采用的多层结构加剧了这种情况。在本文中,我们提出了一种使用深度神经网络自动基于图像检测飞机结构腐蚀的方法。对于机器学习,我们使用一个数据集,该数据集包含来自波音和空客飞机不同搭接接头的 D-Sight 飞机检查系统 (DAIS) 图像。我们还采用迁移学习来克服飞机腐蚀图像的短缺。精度超过 93%,我们证明我们的方法检测腐蚀的精度与训练有素的操作员相当,有助于减少与操作员疲劳或培训不足相关的不确定性。我们的结果表明,我们的方法可以为航空航天工业的腐蚀监测专家和工程师提供支持,可能有助于实现基于条件的维护协议的自动化。
生物可吸收电子设备作为临时生物医学植入物,代表了一类新兴技术,与目前需要在使用一段时间后进行手术移植的一系列患者病症相关。要获得可靠的性能和良好的降解行为,需要能够作为封装结构中生物流体屏障的材料,以避免有源电子元件过早降解。本文提出了一种满足这一需求的材料设计,其防水性、机械柔韧性和可加工性优于替代品。该方法使用由旋涂和等离子增强化学气相沉积形成的聚酐和氮氧化硅交替膜的多层组件。实验和理论研究调查了材料成分和多层结构对防水性能、水分布和降解行为的影响。电感电容电路、无线电力传输系统和无线光电设备的演示说明了该材料系统作为生物可吸收封装结构的性能。
摘要 具有高拉伸性、灵敏度和稳定性的柔性压力传感器无疑是智能软机器人、人机交互、健康监测等领域潜在应用的迫切需求。然而,目前的柔性压力传感器大多由于其多层结构,无法承受大变形,在频繁操作过程中容易出现性能下降甚至失效。本文提出一种可拉伸全纳米纤维离子电子压力传感器,其由离子纳米纤维膜作为介电层、液态金属作为电极组成。该传感器在0~300 kPa的宽范围内表现出1.08 kPa -1的高灵敏度,具有约18/22 ms的快速响应-松弛时间以及良好的稳定性。高灵敏度来自于离子膜/电极界面形成的双电层,而高拉伸性和稳定性则源于原位封装的全纳米纤维结构。作为概念验证,原型传感器阵列被集成到柔性气动夹持器中,展示了其在抓取过程中的压力感知和物体识别能力。因此,该方案提供了另一种极好的策略来制造在高拉伸性、灵敏度和稳定性方面具有出色性能的可拉伸压力传感器。
摘要 — 如果可以在 3D 模型上评估模块的结构弱点,则无需物理原型即可对电源模块进行可靠性结构优化。在本研究中,研究了 3D 热应力模拟作为中压电源模块热循环测试 (HCT) 故障点的预测工具。该模块具有两种不同陶瓷(Al2O3 和 AlN)的多层结构,以减少寄生电容。在这个结构复杂的模块中,实际测试样品的故障点与 3D 模拟中的热机械应力的弱点相重合。热循环测试(125/-40°C)用于模拟和测试。模块的故障点主要是 HCT 100 次循环后铜从 AlN 基板表面剥离。剥离位置与模拟中的点相匹配,模拟结果具有两个特征,即高剥离应力点和铜图案的高形状变形。这一观察结果适用于仅与陶瓷连接的铜图案,而与其他相邻层连接的铜图案则不遵循这一趋势。索引术语 —10kV SiC-MOSFET 功率模块、热循环、3D 建模、有限元方法、热机械应力
摘要:众所周知,在现代微电子和纳米电子学中,薄膜结构被广泛用作栅极电介质、钝化层、膜等。本文研究了单晶硅晶片上互连脉冲加热过程中氧化硅薄子层中形成裂纹的问题。本文旨在研究表面热冲击源对薄膜裂纹形成的影响,并详细研究了 SO2 薄膜中裂纹形成的各个方面。在硅衬底-氧化硅子层-铝膜 (Si-SiO 2 -Al) 多层结构上对所做的估计进行了实验验证。作为衬底,使用了磷掺杂的硅单晶晶片,取向为 (111) 方向,电阻率在 = 0.1 Ω . сm 范围内。作者研究了表面金属化层加热的硅晶片(Al-Si 系统)和氧化硅晶片(Al-SiO2 系统)的温度场,既有点热源的情况,也有长矩形金属化路径的情况(假设轨道长度明显超过其宽度)。计算结果表明,金属化路径(宽度 75 μm)横向的温度分布是不均匀的。结果还表明,与 SiO2 膜相比,硅中出现的机械应力水平不足以在热冲击源附近形成裂纹。这是因为硅的抗拉强度高于氧化物。
ZrO 2 和 HfO 2 NC 均用作光学活性镧系元素离子(例如铕)的主体。1,14-18 氟化物(例如 NaYF 4 和 NaGdF 4 )是另一类广泛用作镧系元素主体的纳米晶体,用于上转换和下转换。19-23 在氟化物体系中,合成工艺已经很成熟,可以在纳米晶体内精确定位掺杂剂,并在掺杂核上生长未掺杂的壳。后者产生核/壳结构,这在半导体纳米晶体(量子点)领域是首创的,用于防止激发电子和空穴与表面陷阱相互作用。24、25 同样,壳层保护镧系元素免受表面效应的影响,从而提高上转换和下转换过程的量子效率。 26 此外,在镧系元素掺杂的氟化物的情况下,多层结构可提供受控的能量级联。27 更高的量子效率加上较长的寿命使其可用于时间门控荧光成像等。15、28 由于生产具有复杂(例如核/壳)结构的胶体稳定氧化物纳米晶体的合成挑战,氧化物主体的使用范围较窄。29 但是,氧化物主体的化学性质更稳定,而氟化物可溶解在高度稀释的水介质中。30
摘要 - 复杂的3-D方案中的导航需要适当的环境表示,以了解现场的理解和轨迹生成。我们提出了一个高度效率和可扩展的全球导航框架,基于对环境的层析成像理解,以导航多层结构中的地面机器人。我们的AP-PRACH使用点云图生成断层图,以将几何结构编码为地面和天花板高程。然后,考虑到机器人的运动能力,它评估了场景遍历性。通过平行计算来加速绘制构造和场景评估。与直接在3D空间中的计划相比,我们的方法进一步减轻了轨迹产生的复杂性。它通过搜索多个断层切片并分别调整机器人高度以避免悬垂来生成3-D传播。我们在各种模拟方案中评估了我们的框架 - iOS,并在四足动物的机器人上进一步在现实世界中对其进行了测试。我们的方法将场景评估时间减少了三个数量级,并将路径计划速度提高了三倍,与现有方法相比,在各种复杂的3-D环境中表明了高度有效的全球导航。
机器人技术的最新发展越来越多地强调了传感技术,尤其是触觉感知的重要性,使机器人能够有效地与其环境互动并解释物理相互作用。由于功率效率和低成本,经常研究底层电离机制,用于测量压力和识别材料以增强机器人感知。尽管如此,尽管它们在日常生活中盛行,但仍有使用互动效应来检测弯曲表面的探索有限。在这里,提出了多层结构设计的摩擦多模式触觉传感器(TMTS),以同时识别不同的材料,曲线和压力,从而将不同的方式解耦以启用更准确的检测。通过将传感器连接到机器人的纤维上并利用深度学习分析,定量曲率测量可为对象的详细几何特征提供更精确的见解,而不是仅仅评估其整体形状,因此可以实现具有99.2%精度的12个Grasped对象的自动识别。传感器可以进一步用于准确识别机器人手的不同触摸手势下的物体的柔软度,达到94.1%的精度,证明了其在未来机器人支持的智能社会中的广泛应用。
摘要:玻璃纤维增强聚合物(GFRP)被广泛使用,并在现代社会中起着重要作用。GFRP的多层结构可以导致生产和服务过程中的分层缺陷,这可能会对设备的完整性和安全性产生重大影响。因此,在设备服务过程中监视这些分层缺陷很重要,以评估它们对设备性能和寿命的影响。微波成像测试具有高灵敏度和非接触性质,显示出有望作为检测GFRPS中分层缺陷的潜在方法。然而,目前,关于该场中缺陷图像的定量表征的定量表征有限。为了实现视觉定量非损害测试(NDT),我们提出了与GFRP中分层缺陷的2D成像可视化和定量表征方法,并实现了视觉检测和定量检测的组合。我们构建了一个微波测试实验系统,以验证所提出的方法的有效性。实验的结果表明该方法的有效性和创新能力可以有效地检测GFRP内部0.5 mm厚度的所有分层缺陷,其准确性很高,2D成像的信噪比(SBR)可以达到4.41 dB,位置的定量误差在0.5 mm内,并且区域内的相对误差在0.5 mm之内,相对误差为11%。