复杂度类 NP 中的问题并非全部都是可解的,但可以通过经典计算机在多项式时间内给出解来验证。复杂度类 BQP 包括量子计算机可在多项式时间内解决的所有问题。素数分解属于 NP 类,由于 Shor 算法,也属于 BQP 类。NP 类中最难的问题称为 NP 完全问题。如果量子算法可以在多项式时间内解决 NP 完全问题,则意味着量子计算机可以在多项式时间内解决 NP 中的所有问题。在这里,我们提出一个多项式时间量子算法来解决 SUBSET − SUM 问题的 NP 完全变体,从而使 NP ⊆ BQP 。我们说明,给定一组整数(可能是正数或负数),量子计算机可以在多项式时间内判断是否存在任何和为零的子集。我们的成果在现实世界中有许多应用,例如有效地在股票市场数据中寻找模式,或在天气或大脑活动记录中寻找模式。例如,在图像处理中匹配两个图像的决策问题是 NP 完全的,当不需要振幅放大时,可以在多项式时间内解决。
摘要 - 自动驾驶的基本任务之一是安全的轨迹计划,决定车辆需要驾驶的任务,同时避免障碍,遵守安全规则并尊重道路的基本限制。这种方法的实际应用涉及考虑周围环境条件和运动,例如车道变化,避免碰撞和车道合并。本文的主要重点是使用高阶多项式来开发和实施安全碰撞的高速公路车道变化轨迹,以高度自动化驾驶功能(HADF)。规划通常被认为是比对照更高的级别过程。行为计划模块(BPM)的设计旨在计划高级驾驶动作(例如Lane Change Maneuver),以安全地实现横向指导的功能,以确保车辆安全性和通过环境有效的运动计划。基于从(BPM)收到的建议,该函数将产生一个相应的轨迹。所提出的计划系统是特有的,具有基于多项式的算法的情况,对于两个车道高速公路方案。多项式曲线具有连续曲率和简单性的优点,可降低整体复杂性,从而可以快速计算。通过MATLAB模拟环境对所提出的设计进行了验证和分析。结果表明,本文提出的方法在车道变化动作的安全性和稳定性方面取得了显着提高。索引项 - BPM,HADF,MPC,车道变更,轨迹产生。
这是量子复杂性理论中的一个长期开放问题,即复杂性NP类的两个可能的量子类似物是否等效。QMA被定义为可以通过多项式量量子量子证人访问的多项式时间量子算法可以解决的决策问题,而QCMA是可通过多项式量子算法可解决的一类决策问题,仅通过多项式量子算法可以访问多项式规定的经典证人。换句话说,问题要问:量子证明是否比经典证据更强大?虽然包含QCMA QMA很容易看出,但这两个类别是否相等的问题(首先由Aharonov和Naveh [3]提出)仍然没有解决。的确,这些类别之间的无条件分离超出了当前已知的技术。一个更容易但仍未解决的问题是显示QMA和QCMA之间的甲骨文分离。这是因为Turing Machine模型中的Oracle分离可以通过在更简单的查询复杂性模型中的分离来显示,其中相似的
摘要:借助量子信息论中的技术,我们开发了一种方法,可以系统地获得多个矩阵变量中的算子不等式和恒等式。它们采用迹多项式的形式:涉及矩阵单项式 X α 1 ··· X α r 及其迹 tr ( X α 1 ··· X α r ) 的多项式表达式。我们的方法依赖于将对称群在张量积空间上的作用转化为矩阵乘法。因此,我们将极化的凯莱-汉密尔顿恒等式扩展为正锥上的算子不等式,用 Werner 状态见证来表征多线性等变正映射集,并在张量积空间上构造置换多项式和张量多项式恒等式。我们给出了与量子信息论和不变理论中的概念的联系。
我们给出了一个多项式时间量子算法,用于求解具有确定多项式模噪比的带错学习问题 (LWE)。结合 Regev [J.ACM 2009] 所示的从格问题到 LWE 的简化,我们得到了多项式时间量子算法,用于求解所有 n 维格在 ˜ Ω(n4.5) 近似因子内的决策最短向量问题 (GapSVP) 和最短独立向量问题 (SIVP)。此前,还没有多项式甚至亚指数时间量子算法可以求解任何多项式近似因子内所有格的 GapSVP 或 SIVP。为了开发一种求解 LWE 的量子算法,我们主要介绍了两种新技术。首先,我们在量子算法设计中引入具有复方差的高斯函数。特别地,我们利用了复高斯函数离散傅里叶变换中喀斯特波的特征。其次,我们使用带复高斯窗口的窗口量子傅里叶变换,这使我们能够结合时域和频域的信息。使用这些技术,我们首先将 LWE 实例转换为具有纯虚高斯振幅的量子态,然后将纯虚高斯态转换为 LWE 秘密和误差项上的经典线性方程,最后使用高斯消元法求解线性方程组。这给出了用于求解 LWE 的多项式时间量子算法。
在1984年,沃恩·琼斯(Vaughan Jones)[琼斯5]发现了康威(Conway)绞线的一种变体,这引起了一个新的不变,现在称为琼斯多项式。琼斯通过研究用于统计力学中的代数为templeley-lieb代数的代数的特性,发现了他的不变。他从自己对von Neumann代数的深入研究中重新发现了Temperley-Lieb代数,与量子力学密切相关,Jones Construction被HOM FLOP概括了。这是Hoste,Ocneanu,Millett,Freyd,Lick-Orish,Yetter,Przytycki和Trawczk的首字母缩写。这些数学家听到了琼斯的早期讲座。他们发现了琼斯多项式的两个可变概括,当然被称为hom fl ypt ypt多项式。琼斯表明,他的新多项式满足了类似于康威(Conway)关系的绞线关系。他证明了
摘要。基于晶格的密码学是量子后安全加密方案的有前途的基础,其中有错误的学习(LWE)问题是钥匙交换,收益和同构计算的基石。LWE的现有结构化变体,例如Ring-Lwe(RLWE)和Module-Lwe(MLWE),依靠多项式环以提高效率。但是,这些结构固有地遵循传统的多项式乘法规则,并以它们表示结构化矢量化数据的能力来实现。这项工作介绍了多种元素(VLWE),这是建立在代数几何形状基于代数几何形状的新的结构化晶格概率。与RLWE和MLWE不同,后者使用标准乘法使用多项式环,VLWE在代数品种定义的多元多项式环上使用VLWE操作。一个关键的区别是这些多项式不包含混合变量,并且乘法操作是定义的坐标,而不是通过标准的多项式乘法。该结构可以直接编码和同态处理高维数据,同时保持最差的案例至平均案例硬度降低。我们通过将VLWE的安全性降低到解决理想SVP的多个独立实例中,证明了其针对分类和量子攻击的弹性。此外,我们分析了混合代数武器攻击的影响,表明现有的Gröbner基础和降低技术并不能直接损害VLWE的安全性。建立在该基础上,我们基于VLWE构建了矢量同态加密方案,该方案支持结构化计算,同时维持受控的噪声增长。此方案为隐私的机器学习,加密搜索和对结构化数据的计算进行了潜在的优势。我们的结果位置VLWE是基于晶格的密码学中的一种新颖而独立的范式,杠杆几何形状可以使新的加密功能超出传统的多项式戒指。
摘要。我们考虑一种从量子成员查询中学习布尔函数的模型。该模型在 [26] 中进行了研究,其中表明,任何一类布尔函数如果可以从多项式数量的量子成员查询中从信息理论上学习,那么从多项式数量的经典成员查询中也可以从信息理论上学习。在本文中,我们建立了量子学习和经典学习之间的强计算分离。我们证明,如果存在任何加密单向函数,那么就存在一类布尔函数,它可以从量子成员查询中以多项式时间学习,但不能从经典成员查询中以多项式时间学习。我们结果的一个新结果是量子算法可以破解在经典环境中安全的一般加密构造。
本文探讨了代数几何的基本工具格罗布纳基的量子计算可行性。计算格罗布纳基的经典方法基于 Buchberger 算法,我们的问题是如何在其中采用量子算法。寻找最大值的量子算法可用于检测多项式的首项,这是计算 S 多项式所必需的。关于格罗布纳基的 S 多项式的约化可以通过表示多项式的矩阵的 Gauss-Jordan 消元法的量子版本来完成。然而,多项式零约化的频繁发生阻碍了量子算法的有效应用。这是因为多项式的零约化发生在非满秩矩阵中,而量子线性系统算法(通过矩阵求逆)对此是不够的,因为众所周知的量子线性求解器(如 Harrow-Hassidim-Lloyd)需要秘密计算特征值的逆。此类算法应在保证矩阵可以求逆的有限情况下使用。例如,从非约化 Gr¨obner 基到约化 Gr¨obner 基的转换就是这种类型的,量子算法肯定可以实现计算的部分加速。关键词——量子计算;量子算法;量子力学;符号计算;Gr¨obner 基;Buchberger 算法;F4 算法,F5 算法,F5C 算法