这项研究首先介绍了高斯莱昂纳多多项式序列。我们获得此序列的基本属性,例如生成函数,Binet的公式,矩阵形式。此外,我们使用Leonardo编号研究了编码端解码方法。最后,我们检查了向接收器发送不正确的错误检测和校正。参考文献[1] Bacaer,N。,《数学种群动力学的简短历史》,Springer-Verlag,伦敦,2011年。[2] Horadam,A。F.,《美国数学月刊》,70(3),289,1963。[3] Shannon,C。E.,《贝尔系统技术杂志》,27(3),379,1948。[4] Moharir,P。S.,IETE研究杂志,16(2),140,1970。[5] Basu,M.,Prasad,B.,Chaos,Solitons分形,41(5),2517,2009。[6] Catarino,P。M.,Borges,A.[7] Soykan,Y。,《数学进步研究杂志》,18(4),58,2021。[8]çelemoğlu,ç。[9] Gauss,C.F。,理论残留物biquadraticorum:评论Secunda,典型Dieterichtianis,1832年。[10] Halici,S.,Sinan,O。Z.
是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审证明)预印版本的版权持有人于2023年9月18日发布。 https://doi.org/10.1101/2023.09.18.23295708 doi:medrxiv preprint
能源存储是一种越来越有吸引力的解决方案,可降低电力成本和碳足迹并提高能源系统的灵活性和可靠性。近年来,由于技术成本的下降和可再生能源渗透到电网中,因此储能的使用越来越大。一个储能系统还提供了能源套利,这是指在能源价格低和销售时通过充电,通过放电在价格高时的能源。为了最大化此收入,电池存储需要适当的管理策略,能够根据价格信号做出充电/放电决定。当将能量存储集成到更复杂的优化问题中时,就时间和计算工作有效做出有效的决定变得更加关键。可以将参与能量套利的电池充电问题的标准混合整数线性编程(MILP)模型以
摘要—目的:基于深度学习技术的脑电信号识别需要充足数据的支持,然而在特定受试者的运动想象任务中通常会出现训练数据稀缺的情况,除非能使用多受试者数据来扩充训练数据。遗憾的是,由于不同受试者的数据分布差异很大,仅在多受试者数据上进行训练只能使模型性能得到微小的提高甚至更差。方法:为解决该问题,本文提出了一种新的加权多分支(WMB)结构来处理多受试者数据,其中每个分支负责拟合一对源-目标受试者数据,并使用自适应权重来整合所有分支或选择权重最大的分支来做出最终决策。将提出的 WMB 结构应用于六种著名的深度学习模型 (EEGNet、Shallow ConvNet、Deep ConvNet、ResNet、MSFBCNN 和 EEG_TCNet),并在 EEG 数据集 BCICIV-2a、BCICIV-2b、高伽马数据集 (HGD) 和两个补充数据集上进行了全面的实验。结果:与最先进模型相比的优异结果证明了所提方法在特定受试者运动想象 EEG 分类中的有效性。例如,提出的 WMB_EEGNet 在 BCICIV-2a、BCICIV-2b 和 HGD 上分别实现了 84.14%、90.23% 和 97.81% 的分类准确率。结论:很明显,提出的 WMB 结构能够很好地利用具有较大分布差异的多受试者数据进行特定受试者的 EEG 分类。
b"摘要:Dicke 态是具有汉明权重 k 的 n 个量子比特的叠加,表示为 | D nk \xe2\x9f\xa9 。Dicke 态经常用于为量子搜索算法(例如,Grover 搜索和量子行走)准备输入叠加,这些算法解决具有一定数量 nk 个候选解的组合问题。B\xc2\xa8artschi 和 Eidenbenz 提出了一种具体的量子电路,用于使用多项式量子门构造 Dicke 态 | D nk \xe2\x9f\xa9,并且他们根据汉明权重 k 对该电路进行了推广,以准备 Dicke 态的叠加。随后,Esser 等人提出了另一种量子电路,用于使用多项式门和一些辅助量子比特生成 Dicke 态 | D nk \xe2\x9f\xa9。在本文中,我们推广了 Esser 的状态准备电路以构造一个Dicke 态的叠加。我们对两个广义 Dicke 态准备电路进行了具体的比较。我们使用来自 IBM 量子体验服务 (IBMQ) 的真实量子机器进行噪声模拟和实验。这两个电路都使用噪声中尺度量子 (NISQ) 设备成功构建了广义 Dicke 态叠加,尽管受到噪声的影响。”
我们研究了统一的财产测试,其中量子算法可以查询对黑盒统一的查询访问,并且必须决定是否满足某些财产。除了包含标准量子查询复杂性模型(单位编码二进制字符串)作为特殊情况外,此模型还包含没有经典类似物的“固有的量子”问题。表征这些问题的查询复杂性需要新的算法技术和下限方法。我们的主要贡献是用于统一财产测试问题的广义多项式方法。通过利用与不变理论的连接,我们将此方法应用于诸如确定单位的复发时间,近似标记子空间的尺寸以及近似标记状态的纠缠熵等问题。我们还提出了一种基于统一的属性测试方法,用于QMA和QMA之间的甲骨文分离(2),这是量子复杂性理论中长期存在的问题。
PCE的主要特征是正交多项式家族与输入特征的统计数据之间有很强的联系。这种连接的好处是双重的。首先,如果选择正交多项式与输入数据的概率分布一致,则可以提高PCE响应表面的质量。其次,基于PCE的响应表面的利用简化了灵敏度分析和不确定性定量,因为可以在没有蒙特卡罗模拟的情况下分析地计算多种灵敏度指标。
摘要 —非线性控制分配是基于现代非线性动态逆的飞行控制系统的重要组成部分,该系统需要高精度的飞机气动模型。通常,精确实施的机载模型决定了系统非线性的消除效果。因此,更精确的模型可以更好地消除非线性,从而提高控制器的性能。本文提出了一种新的控制系统,该系统将非线性动态逆与基于分段多线性表示的控制分配相结合。分段多线性表示是通过对块矩阵的克罗内克积的新泛化,结合非线性函数的规范分段线性表示而开发的。还给出了分段多线性模型的雅可比矩阵的解析表达式。所提出的公式给出了分段多线性气动数据的精确表示,因此能够精确地模拟飞机整个飞行包线内的非线性气动特性。所得到的非线性控制器用于控制具有十个独立操作控制面的无尾飞翼飞机。两种创新控制面配置的仿真结果表明,可以实现完美的控制分配性能,与普通的基于多项式的控制分配相比,具有更好的跟踪性能。
在1986年在Dan Voiculescu的一系列论文中引入后,自由概率在其理论和应用中都实现了令人难以置信的增长。这包括Nica和Speicher首先引入的自由库群的理论,该理论通过组合镜的镜头提供了一个统一的框架,以理解经典和自由的独立性[27]。它已被用作各个领域的工具,包括随机矩阵理论,组合,对称组的表示,大偏差和量子信息理论。在大多数情况下,上面提到的关系仅在渐近意义上存在,这主要是由于没有非平凡的自由对象存在于实用维度。然而,作者与丹尼尔·斯皮尔曼(Daniel Spielman)和尼克希尔·斯里瓦斯塔瓦(Nikhil Srivastava)的最新作品[18,19,22]表明,有限结构的行为与渐近的“自由”行为非常相似,尽管从技术上讲并不是“自由”。本文的目的是提出一种理论,我们称之为“有限的自由概率”,是一种扩展基本概念和自由概率的见解,以使用多项式卷积为有限的对象。
量子电路优化对于提高量子计算的实用性和效率至关重要。特别是,为了满足量子电路急需的紧凑性,可逆电路的合成正在被深入研究。由于 T 门具有较高的容错实现成本 [1],因此人们投入了大量工作来最小化 T 数量 [2–9] 和 T 深度 [10–13]。相比之下,CNOT 门的实现成本较低,因为它是 Clifferd 群的一部分 [14]。尽管如此,基于 T 门的度量的使用有局限性,事实证明,电路中 CNOT 门的数量是一个不容忽视的度量,因为它会对电路的实现成本产生重大影响 [15]。除此之外,噪声中尺度量子 (NISQ) 时代的量子计算机 [16] 具有架构限制。具体而言,这些计算机中的量子比特并非以全对全的方式连接。这意味着具有 2 的元数的逻辑门(例如 CNOT 门)只能应用于某些量子比特对之间。因此,使电路符合给定架构不可避免地会导致 CNOT 计数增加 [17]。处理架构约束的一种常见方法是插入 SWAP 门来路由逻辑量子比特 [18–21]。另一种方法是执行架构感知合成 [22],这种方法通常会产生具有低得多的 CNOT 计数的电路,同时满足架构约束。这种方法通常应用于可以用高级构造(例如线性可逆函数)表示的电路子集。然后可以将这些电路组合在一起以形成完整的架构兼容量子电路 [23, 24]。此编译方案中的一个重要构建块是合成仅由 CNOT 和 RZ 门组成的电路。这些电路可以用称为相位多项式的高级构造来表示。在这项工作中,我们解决了相位多项式合成问题,并针对受限和完全连接的情况提出了有效的算法。