。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2024年10月7日发布。 https://doi.org/10.1101/2024.08.06.606784 doi:Biorxiv Preprint
深度突变扫描可为细菌必需基因的功能提供重要见解。在这里,我们开发了一种高通量方法,用于在大肠杆菌的天然遗传背景下突变其必需基因。我们使用 Cas 9 介导的重组将由易错 PCR 创建的突变文库引入基因组上的一个基因片段内,使用经过预先验证高效的单个 gRNA。通过深度测序跟踪突变频率揭示了引入突变的位置和数量的偏差。我们通过增加同源臂长度和阻止错配修复来克服这些偏差,使非必需基因的突变效率达到 85%,必需基因的突变效率达到 55%。这些实验还加深了我们对使用具有单核苷酸变化的 dsDNA 供体的未充分表征的重组过程的理解。最后,我们将我们的技术应用于 RNA 聚合酶的 β 亚基 rpoB,以研究对利福平的耐药性。在一次实验中,我们验证了过去几十年进行的多项生化和临床观察结果,并通过双突变体的研究提供了对抗性补偿的见解。
•对E.Mbrace 3期研究的独立临时分析发现,疫苗候选者在预防侵入性大肠杆菌疾病方面没有表现出足够的功效•2025年2月13日,未发现与疫苗候选者有关的安全信号。由独立数据监测委员会(IDMC)进行的E.Mbrace第三阶段研究(临床试验标识符:NCT04899336)的综述确定,Sanofi和Johnson&Johnson&Johnson的疫苗候选候选疫苗候选遗传性大肠杆菌的候选者没有足够有效地预防侵入性大肠杆菌疾病(与Incosive E. coli Seplia Sepliation Clace spalt相比)。尚未确定与疫苗候选者有关的安全信号,并且在整个研究中,调查人员确保开发IED的参与者获得了及时的治疗和护理。由于IDMC的确定,E.Mrace研究正在停止。
侵入性的太阳岩(Tubastraea tagusensis和Tubastraea球球虫)正在触发巴西东南海岸的硬和柔软底部的巨大海上变化。今天的生物入侵是对生态系统功能的主要威胁之一,并被认为是生物丧失的第二个主要原因(Molnar等人。2008)。 就是这样,每个小说的入侵都会带来不可预测的威胁和改变的环境,需要理解和解决。 在1980年代后期,在西南大西洋上首次在西南大西洋上报道了太阳 - Castro and Pires 2001)。 从那以后,他们在3500公里的海岸线上建立了自己在岩石海岸上的猛烈竞争者,从凯萨(Ceará)到圣塔卡塔纳(Santa Catarina 2017)。 在某些地区,入侵是前所未有的,太阳岩占据了近100%的硬基质(Mantelatto等人。 2011),造成高阶影响,例如脊柱孔(Silva等人。 2019)和Nektonic社区结构和功能变化(Miranda等人 2018)。 当前,这些入侵者也以最令人惊讶且以前未报告的方式改变了底部的海景。 一种积极的反馈被称为入侵崩溃,入侵物种有助于其他入侵者增加社区变化2008)。就是这样,每个小说的入侵都会带来不可预测的威胁和改变的环境,需要理解和解决。在1980年代后期,在西南大西洋上首次在西南大西洋上报道了太阳 - Castro and Pires 2001)。从那以后,他们在3500公里的海岸线上建立了自己在岩石海岸上的猛烈竞争者,从凯萨(Ceará)到圣塔卡塔纳(Santa Catarina2017)。在某些地区,入侵是前所未有的,太阳岩占据了近100%的硬基质(Mantelatto等人。2011),造成高阶影响,例如脊柱孔(Silva等人。2019)和Nektonic社区结构和功能变化(Miranda等人2018)。当前,这些入侵者也以最令人惊讶且以前未报告的方式改变了底部的海景。一种积极的反馈被称为入侵崩溃,入侵物种有助于其他入侵者增加社区变化
使用 SYBR® Green qPCR 和针对大肠杆菌 16S rRNA 基因座的特异性引物,筛选至少 1 µl 脱氧核苷酸 (dNTP) 溶液混合物中是否存在大肠杆菌基因组 DNA。使用由纯化的大肠杆菌基因组 DNA 生成的标准曲线对结果进行量化。大肠杆菌基因组 DNA 污染的测量水平为 1 个大肠杆菌基因组。
使用 SYBR® Green qPCR 和针对大肠杆菌 16S rRNA 基因座的特异性引物,筛选至少 1 µl 脱氧核苷酸 (dNTP) 溶液混合物中是否存在大肠杆菌基因组 DNA。使用由纯化的大肠杆菌基因组 DNA 生成的标准曲线对结果进行量化。大肠杆菌基因组 DNA 污染的测量水平为 1 个大肠杆菌基因组。
摘要 大肠杆菌是印度尼西亚尿路感染 (UTI) 的主要原因,每年约有 180,000 例报告。UTI 病例越多,越需要使用准确、快速、简单且经济的 DNA 分离方法进行 PCR 诊断。然而,目前煮沸 DNA 分离法中没有从蛋白质和 RNA 污染物中纯化 DNA 的阶段。本研究旨在调查将蛋白酶 K 和 RNase 纳入煮沸 DNA 分离法对分离过程中大肠杆菌 DNA 纯度和浓度的影响。煮沸法涉及加热至 95 C – 100 C 导致细胞裂解并释放细胞成分,包括 DNA。尿液样本以不同的麦克法兰标准(0.25、0.5 和 1)人工污染大肠杆菌。然后进行煮沸 DNA 分离法,然后使用 NanoDrop 分光光度计分析纯度和浓度。本研究表明,煮沸 DNA 分离法中使用的蛋白酶 K 和 RNase 浓度与随后的 DNA 纯度和浓度增加之间存在正相关性。尽管与未添加蛋白酶 K 和 RNase 相比,DNA 纯度和浓度有所增加,但与未添加蛋白酶 K 和 RNase 相比,其统计学意义并不显著,DNA 纯度的 p 值为 0.245,DNA 浓度的 p 值为 0.353。建议进一步研究在煮沸 DNA 分离法中使用更高的蛋白酶 K 和 RNase 浓度,以提高大肠杆菌 DNA 的纯度和浓度。这种增强可以改善 PCR 扩增并有助于诊断大肠杆菌相关的尿路感染。关键词煮沸法、DNA 纯度、DNA 浓度、蛋白酶 K、RNase。
在本研究中,我们对具有生物活性的 IL-2 进行了分步优化,以便使用大肠杆菌 Nissle 1917 进行递送。菌株工程与体外细胞测定相结合,以测量微生物产生的 IL-2 (mi-IL2) 的生物活性。接下来,我们使用 3D 肿瘤球体模型评估了 mi-IL2 的免疫调节潜力,该模型显示 mi-IL2 对免疫细胞活化具有很强的影响。最后,我们在小鼠 CT26 肿瘤模型中评估了工程菌株的抗癌特性。将工程菌株静脉注射并选择性地定植于肿瘤中。治疗耐受性良好,接受治疗的小鼠的肿瘤生长率略有降低,肿瘤中的 IL-2 水平显着升高。这项工作为有兴趣将大肠杆菌 Nissle 工程化为一种新型抗癌微生物疗法的研究人员展示了一种工作流程。
•肠外致病性大肠杆菌(EXPEC)是败血症的主要细菌原因,每年在全球范围内造成约1000万例入侵性疾病(IED)病例,•正在进行疫苗候选疫苗的3期临床试验。新型Expec疫苗预计将补充2023年10月3日现有的成人疫苗投资组合。Sanofi今天宣布,它已与Johnson&Johnson公司Janssen Pharmaceuticals,Inc。(Janssen)达成协议,以开发和商业化詹斯森(Janssen)疫苗候选疫苗候选者(9-Valent),该大肠杆菌(9-Valent)是由Janssen开发的,目前是3期。该协议汇集了Janssen在这种潜在的一流产品和Sanofi的全球制造足迹背后的强大科学,并在推出创新疫苗方面认可了世界一流的专业知识。