微电子机械系统( Micro Electro Mechanical Systems ),是建立在微米 / 纳米技 术基础上,对微米 / 纳米材料进行设计、加工、制造、测量和控制的技术。 它可将机械构件、光学系统、驱动部件电控系统集成为一个整体单元的微 型系统,基本特点为微型化、智能化、多功能、高集成度和适用于大批量 生产
现役部队和预备役高年期计划的培训和管理 更新了负责办公室至 BUPERS-328。 更新了 MyNavy 职业中心电话号码和
操作条件下,在发货给客户之前已投入生产。此外,制造商必须在批量生产之前完成零件数据表中列出的所有操作条件的多批次特性分析。因此,生产测试限值针对典型测试条件设定,足以保证零件满足数据表上所有参数的性能规格;• 采用统计过程控制在全自动生产线上生产
近年来,半导体、电子、光学、MEMS、生物医药等诸多领域对复杂形状的三维结构的需求日益增加。迄今为止,大多数微结构制造工艺源自半导体工艺,例如硅晶片的薄膜加工和厚膜加工1-3。这些过程不可避免地需要曝光过程。曝光工艺由于需要使用特殊的设备,成本较高,并且在材料方面也受到很多限制。因此,不使用曝光工艺的微结构制造技术的研究正在积极开展。代表性例子包括微加工和微电火花加工 (microEDM)1,4 等机械方法。特别是随着相关产业的发展,具有三维形状的微型齿轮零件的需求量也日益增大,而实现此类零件的批量生产是实现工业化的必要条件。通过使用模具的注塑工艺,可以大规模生产微型齿轮部件。注射成型根据成型材料不同分为塑料注射成型和粉末注射成型,而粉末注射成型又根据所用粉末的种类分为MIM(金属注射成型)和CIM(陶瓷注射成型)。目前,塑料齿轮一般采用塑料注塑工艺进行量产,但众所周知的事实是,采用塑料材料制造的微型齿轮零件在刚性和耐久性方面存在着极限。因此,最近正在积极研究使用粉末金属注射成型工艺而非塑料来生产微型齿轮零件。本研究是通过金属注射成型工艺制造微型齿轮状产品的基础研究。目的是利用粉末注射模芯的微细电火花加工来制造微型齿轮状芯。
摘要。在人们日益担心资源枯竭和环境破坏的时代,闭环供应链 (CLSC) 的概念已获得认可,被视为一种可行且可持续的解决方案。本研究通过分析闭环供应链中的回收和再制造程序,考察了环境保护与经济发展之间的相互依存关系。本文利用广泛的案例研究来调查闭环供应链在材料和部件回收和再制造过程中的关键意义。通过全面研究环境效益和经济效益之间的复杂关系,本研究揭示了在当代供应链管理中实施闭环系统所产生的各种微妙影响。该研究采用混合方法,结合定量和定性研究。该研究使用定量数据来衡量回收和再制造过程对减少原材料使用、能源消耗和温室气体排放的贡献程度。该研究强调了闭环供应链在促进循环经济理念、减少废物排放和减轻公司对环境影响方面的能力。这项研究提供了宝贵的见解,从业者、政客和公司可以利用这些见解做出明智的决策,在供应链战略中优先考虑环境保护和经济增长。
摘要:定向能量沉积 (DED) 已广泛应用于部件修复。在修复过程中,表面缺陷被加工成凹槽或槽口,然后重新填充。凹槽几何形状的侧壁倾斜角已被公认对修复部件的机械性能有相当大的影响。这项工作的目的是通过实验和建模研究修复各种 V 形缺陷的可行性。首先,通过扫描缺陷区域定义修复体积。然后,对修复体积进行切片以生成修复刀具路径。之后,使用 DED 工艺在具有两种不同槽口几何形状的受损板上沉积 Ti6Al4V 粉末。通过微观结构分析和拉伸试验评估修复部件的机械性能。对修复部件的测试表明,在三角形槽口修复中,沉积物和基材之间具有良好的结合。开发了基于顺序耦合热机械场分析的 3D 有限元分析 (FEA) 模型来模拟相应的修复过程。测量了修复样品上基体的热历史,以校准 3D 耦合热机械模型。温度测量结果与预测的温度结果非常吻合。之后,使用经过验证的模型预测零件中的残余应力和变形。预测的变形和应力结果可以指导修复质量的评估。
摘要:本文研究了利用我们最近开发的激光箔打印 (LFP) 增材制造方法制造致密铝 (Al-1100) 部件 (相对密度 > 99.3%)。这是通过使用 7.0 MW/cm 2 的激光能量密度来稳定熔池形成并以 300 µ m 厚度的箔片产生足够的穿透深度来实现的。LFP 制造的样品中的最高屈服强度 (YS) 和极限拉伸强度 (UTS) 沿激光扫描方向分别达到 111±8 MPa 和 128±3 MPa。与退火的 Al-1100 样品相比,这些样品表现出更高的拉伸强度但更低的延展性。断口分析显示拉伸试验样品中存在拉长的气孔。利用电子背散射衍射 (EBSD) 技术观察到 LFP 制备样品中沿凝固方向的强烈晶体织构和密集的亚晶界。
我们发现,许多经典概念需要扩展,以适应 AM(特别是激光粉末床熔合)中存在的特定微观结构(晶粒尺寸和形状、晶体结构)和缺陷分布(空间排列、尺寸、形状、数量)。例如,缺陷的 3D 表征变得至关重要,因为 AM 中的缺陷形状多种多样,对疲劳寿命的影响方式与传统生产的部件不同。这些新概念对确定 AM 部件疲劳寿命的方式有直接影响;例如,由于仍然缺少缺陷分类和可容忍形状和尺寸的量化,因此必须定义一种新策略,即理论计算(例如 FEM)允许确定最大可容忍缺陷尺寸,并且需要无损检测 (NDT) 技术来检测此类缺陷是否确实存在于组件中。这些示例表明,AM 部件的组件设计、损坏和故障标准以及特性(和/或 NDT)如何完全相互关联。我们得出结论,这些领域的同质化代表了工程师和材料科学家当前面临的挑战。