使用金属粉末原料的基于激光的直接能量沉积 (DED) 系统被认为是一种有前途的制造方法,因为它们能够缩短生产周期并制造复杂的零件几何形状。通过在同轴注入材料并使其凝固的同时用高功率激光束产生熔池来构建组件。大规模使用 DED 的障碍在于粉末收集效率差,在这种情况下,一部分注入的粉末会逸出熔池,导致打印材料质量与供应原料质量之比下降。已经观察到混合制造机床内 DED 系统上同轴喷嘴的磨损状态会随着时间的推移降低收集效率。本研究通过将流动可视化技术应用于现场过程监控格式、实施计算流体动力学 (CFD) 模拟和沉积测试来调查这种影响。识别和分类由于磨损而导致的喷嘴几何缺陷,并通过多种计算方法证明喷嘴尖端磨损(导致轴向尖端减少)对粉末收集效率的影响。发现集料效率与粉末流直径之间存在线性相关性,导致喷嘴尖端逐渐减小至 -1 毫米时效率损失 15-20%。这些结果为进一步研究粉末进料 DED 系统的磨损效应和零缺陷制造解决方案奠定了基础。
用高科技合金制造结构件的成本很高,因此,缺陷或磨损的修复对工业生产来说是一项重要的资产[1]。在众多新技术中,激光熔覆(又称直接能量沉积)正处于新兴领先地位。与其他修复工艺相比,熔覆中的能量输入是空间局部的,受热影响区较小[2–4]。在激光熔覆修复的部件中,基材和熔覆区之间会形成一个具有微观结构梯度的界面。它决定了修复部件的内聚力和寿命[5, 6]。工艺参数和部件的具体几何形状共同控制着热输入、熔池形状、空间温度梯度和冷却速度,而这些因素决定着材料的微观结构。材料体积可以经过多次凝固-再熔化循环,打印上述各层,具体取决于熔池深度和形状,熔池深度和形状可能非常复杂,正如 Biegler 等人在 [7] 中通过实验展示的那样。材料随后也会经历退火,因为部件一直处于高温下,直到工艺结束 [8, 9]。
(SH-60B 直升机、太平洋舰队格里德利号驱逐舰、反潜轻型中队和佛罗里达州美国海军基地)
CALSTART 开发了一个财务模型,使用行业合作伙伴提供的合理衰减率逐个评估 BET 组件的 RV。根据该模型,当考虑组件转售价值时,BET 的 RV 预期值会很高,尤其是在卡车使用寿命的后期,但在典型融资期的早期也是如此。具体而言,到第 5 年,建模的 BET 组件合计可保留卡车初始价值的 15-25%——这比贷方在其当前承保流程中使用的前景要好。这种 RV 保留率与柴油卡车的 RV 保留率接近,约为 30%,并且随着 BET 继续变得更具成本效益并受到法规的青睐,未来可能会下降。此外,由于电池在二次使用期间具有持续价值,因此在第 8 年后,BET 保留的 RV 比柴油卡车更高。这个基于 BET 组件转售的 RV 基准得到了众多电池二次生命公司的创新市场活动的支持,例如 Zenobē 和 Connected Energy,他们正在利用到 2030 年二手电动汽车电池供应所带来的 20 至 25 亿美元的机会。
免责声明 本报告是由美国政府机构资助的工作报告。美国政府及其任何机构、芝加哥大学阿贡国家实验室或其任何员工或官员均不对所披露的信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的文档作者的观点和意见不一定代表或反映美国政府或其任何机构、阿贡国家实验室或芝加哥大学阿贡国家实验室的观点和意见。
本文件由美国运输部赞助发布,旨在进行信息交流。美国政府对其内容或使用不承担任何责任。美国政府不认可任何产品或制造商。此处出现的贸易或制造商名称仅仅是因为它们被认为对本报告的目标至关重要。本报告中的调查结果和结论均为作者的观点,并不一定代表资助机构的观点。本文件不构成 FAA 政策。有关其使用,请咨询技术文档页面上列出的 FAA 赞助组织。本报告可在联邦航空管理局 William J. Hughes 技术中心的全文技术报告页面:actlibrary.tc.faa.gov 以 Adobe Acrobat 便携式文档格式 (PDF) 获得。
©作者,由EDP Sciences出版。这是根据Creative Commons Attribution许可证条款分发的开放访问文章4.0(http://creativecommons.org/licenses/4.0/)。
该项目的主要目标是开发一种通过光纤传感器检测大型单片复合材料部件的流动前沿技术。这里研究的部件是复合材料助推器外壳,但 Infusion 4.0 技术也可以应用于其他应用。助推器外壳采用真空灌注制造,这意味着由干缠绕碳纤维制成的干预制件在真空灌注铺层中被树脂渗透。在树脂灌注和固化过程中,部件在烤箱中缓慢旋转以避免树脂积聚。树脂与干纤维接触的区域是流动前沿。通过数字模型可视化这个目前不可见的工艺步骤是 Infusion 4.0 项目的目标。制造过程本身在 MT Aerospace 之前的项目中得到了优化。新技术可以检测到流动前沿与预期理想状态的偏差,未来可以在更数字化的制造环境中开发半自动化或全自动工业流程,这是朝着未来太空部件预期的 4.0 工业化迈出的一大步。主要手动的复合材料制造工艺的数字化可能也适用于其他行业,例如航空、风能业务或造船业。
摘要。钛铝化物 (TiAl) 合金是一种金属间化合物,与镍基高温合金相比,它具有低密度、高熔点、良好的抗氧化和耐腐蚀性。因此,这些合金用于航空发动机部件,如涡轮叶片、燃油喷射器、径向扩散器、发散襟翼等。在运行过程中,航空发动机部件在氧化和腐蚀环境中承受高热负荷,导致磨损和其他材料损坏。由于交货时间长且费用高昂,更换整个部件可能并不可取。在这种情况下,维修和翻新可能是回收 TiAl 部件的最佳选择。不幸的是,目前还没有针对 TiAl 基部件的认可修复技术。基于增材制造 (AM) 的定向能量沉积 (DED) 可以作为帮助修复和恢复昂贵航空发动机部件的一种选择。在本文中,回顾了利用 DED 技术局部修复受损的 TiAl 基航空部件的努力。更换整个 TiAl 部件是不可取的,因为这样做成本昂贵。DED 是一种很有前途的技术,用于生产、修复、返工和大修 (MRO) 受损部件。考虑到航空工业的高质量标准,对 DED 修复的 TiAl 部件进行认证以供未来在飞机上使用非常重要。然而,目前尚无关于 TiAl 修复部件认证的标准。案例研究表明,人们正在考虑使用 DED 修复 TiAl 部件。在一台机器上完成加工、修复和精加工功能的混合技术是一种提高修复效率的有吸引力的实施策略。审查表明,对基于 DED 的修复技术的开发和应用的研究有限,这表明非常需要进一步研究。
1. Glenske K、Donkiewicz P、Köwitsch A 等人。金属在骨再生中的应用。Int J Mol Sci。2018;19(3):1-32。2. Smeets R、Precht C、Hahn M 等人。含银聚硅氧烷涂层钛种植体的生物相容性和骨整合:猪体内模型。Int J Oral Maxillofac Implants。2017;32(6):1338-1345。3. Witte F。可生物降解镁种植体的历史:综述。Acta Biomater。2010;6(5):1680-1692。4. Triantafyllidis GK、Kazantzis AV、Karageorgiou KT。不锈钢 316L 骨科板植入物因交替出现疲劳和解理退相干而过早断裂。工程失效分析。2007;14(7):1346-1350。5. Amel-Farzad H、Peivandi MT、Yusof-Sani SMR。不锈钢骨科植入物体内腐蚀疲劳失效及多种不同损伤机制。工程失效分析。2007;14(7):1205-1217。6. Singh Raman RK、Jafari S、Harandi SE。镁合金在生物植入物应用中的腐蚀疲劳断裂:综述。工程断裂力学。2015;137:97-108。7. Maksimkin AV、Senatov FS、Anisimova N 等人。用于骨缺损置换的多层多孔超高分子量聚乙烯支架。Mater Sci Eng C。2017;73:366-372。8. Senatov FS、Kopylov AN、Anisimova N、Kiselevsky MV、Maksimkin AV。基于超高分子量聚乙烯的纳米复合材料作为受损软骨的替代材料。Mater Sci Eng C。2015;48:566-571。9. Senatov FS、Gorshenkov MV、Tcherdyntsev VV 等人。基于超高分子量聚乙烯的生物相容性聚合物复合材料用于软骨缺损置换的可能性。J Alloys Compd。2014;586:544-547。10. Kurtz S 编辑。超高分子量聚乙烯生物材料手册 – 全关节置换和医疗器械中的超高分子量聚乙烯。第三版。阿姆斯特丹:Elsevier Inc.;2016。11. Brach Del Prever EM、Bistolfi A、Bracco P、Costa l。UHMWPE 用于关节置换术 - 过去还是未来?J Orthop Traumatol。2009;10(1): 1-8。12. Senatov FS、Niaza KV、Salimon AI、Maksimkin AV、Kaloshkin SD。模拟骨小梁组织的结构化 UHMWPE。Mater Today Commun。2018;14:124-127。13. Braun S、Sonntag R、Schroeder S 等人。髋臼置换术的背面磨损。Acta Biomater。2019;83:467-476。14. Cowie RM、Briscoe A、Fisher J、Jennings LM。 UHMWPE-on-PEEK OPTIMA 的磨损和摩擦。J Mech Behav Biomed Mater。2019;89: 65-71。15. Abdelgaied A、Fisher J、Jennings LM。全膝关节置换术临床前磨损模拟的综合实验和计算框架。J Mech Behav Biomed Mater。2018;78:282-291。16. Zeman J、Ranusa M、Vrbka M、Gallo J、Krupka I、Hartl M。全髋关节置换术生命周期磨合期 UHMWPE 髋臼杯蠕变变形。J Mech Behav Biomed Mater。2018;87:30-39。