第二章 相关文献 9 2.1 机器人故障与定性评估研究 10 2.1.1 多数据源机器人机械手故障分析 11 2.1.2 单数据源移动机器人可靠性研究 13 2.1.3 用于 USAR 的移动机器人定性评估 14 2.2 故障分析方法 15 2.2.1 故障表征与分类 16 2.2.2 可靠性验证方法 18 2.3 容错系统 21 2.3.1 基于模型的容错系统 21 2.3.2 混合容错系统 23 2.3.3 基于专家系统的容错系统 24 2.3.4 以数据中心为中心容错系统 24 2.3.5 自主计算中的容错 25 2.4 总结 28
在本研究中,我们从汽车和轮胎厂收集了大量断裂接头螺栓,并对每个螺栓进行分析,以确定失效原因和螺栓上裂纹的起始位置。然后根据失效原因和位置对螺栓进行分组,以调查失效概率和失效位置概率。结果表明,低周和高周疲劳占螺栓失效的 70%,80% 的螺栓失效发生在螺栓螺纹区域的深处。只有在确定因低周疲劳而失效的样本中才会发现更靠近头部和杆部交叉处的失效位置。尽管如此,只有 40% 的低周疲劳导致的螺栓失效发生在靠近头部的位置,60% 的失效发生在远离头部的螺纹区域。本研究结果有助于预测螺栓的故障位置,从而有助于指导接头螺栓的预防性维护程序。
对于金属、陶瓷和复合材料等工程材料而言,疲劳是迄今为止最常见的失效原因。从断裂力学角度而言,疲劳意味着由于重复(周期性)施加载荷而导致材料机械阻力的下降,而该载荷本身不足以导致材料静态失效。疲劳失效定义为达到预定材料损伤或裂纹扩展水平所需的循环数或时间。对于工程结构(如桥梁),结构不仅设计为抵抗最大静态载荷,而且更重要的是,在需要修复之前,还要支撑一定数量的载荷循环(例如由日常交通引起)。尽管这些概念已被土木工程师广泛且实际地实施,但这些想法尚未彻底融入对骨骼作为结构材料的理解中,或融入人类脆性骨折的临床预防中。在骨骼研究中,主要的断裂机制仍不确定:骨骼是否更容易在循环载荷下因疲劳机制而断裂,就像大多数工程材料一样,还是它们更容易在单次过载下以静态断裂模式断裂,就像大多数关于骨骼脆性的研究所暗示的那样 1 ?有说服力的证据表明疲劳驱动裂纹扩展机制广泛参与骨折