摘要 — 我们描述了一种新型机电一体化机器人夹持器的设计概念和第一个原型,该夹持器旨在安装在人形机器人上,以实现牢固(即锁定)和稳健的抓握。这种抓握可以理想地支持复杂的多接触运动,例如爬梯子或操纵复杂工具,同时节省能源。为此,我们提出了一种解决方案,即设计一种智能自锁欠驱动机构,该机构与执行器并联安装,当实现所需的抓握时自动触发。该设计通过差速齿轮利用夹持器和制动器之间的可调功率分配。我们的夹持器具有自适应、牢固抓握和节能的优势,并通过原型夹持器进行了实验。
摘要 轨道碎片由太空中废弃的人造物体组成,对关键的空间基础设施造成严重的运行风险。轨道碎片的存在会导致航天器运行成本增加,因为需要采取额外的努力,例如提高卫星轨道或增加屏蔽或其他方法,以保护重要的太空资产免受即将发生的碎片碰撞。其中一些碎片是由于宇航员在空间站进行维护操作时掉落工具而产生的。根据物体在掉落前所受的力/速度条件,它们可能会被转移到不同的轨道或进入地球大气层。这些物品的丢失可能会造成不利影响,因为它不仅会产生不必要的碎片,还会将关键的维护操作延迟到下一次补给任务的到来。本文旨在探索使用吞噬机制作为空间站机械臂末端执行器的可行性,以便在未来的空间站工作中回收此类丢失物品。重点介绍吞噬末端执行器机制的设计,使用 Bricard 机制作为基础单元。夹持器设计为使用单个旋转致动器来驱动,以完全吞噬碎片。本文还介绍了吞噬夹持器的实现方面,并将其用于地面碎片捕获实验/演示。
具有形状一致和可调刚度的夹持器通常通过使用由不同材料制成的软结构和硬结构的组合来实现。这些夹持器通常被称为软夹持器。在这篇评论文章中,我们讨论了具有形状一致能力和刚度可调性的各种夹持器设计。特别是,讨论主要集中在每种夹持器设计在形状一致性和可制造性方面的优势和局限性。然后,介绍了能够进行多材料打印的各种 3D 打印技术。我们讨论了软智能夹持器的多材料 3D 打印的潜力。[版权信息将在生产过程中更新][1] 关键词:增材制造;软机器人;多材料;
夹持器带有弹簧:弹簧可使夹持器向侧面移动,从而能够将夹持器向侧面打开,并插入注射器、过滤器或试管。夹持器末端的锥体:夹持器形成的锥体使注射器/过滤器/或试管能够轻松插入“dandyVice”。
夹持器带有弹簧:弹簧可使其向侧面移动,从而能够将夹持器向侧面打开,并插入注射器、过滤器或试管。夹持器末端的锥体:夹持器形成的锥体使注射器/过滤器/或试管能够轻松插入“dandyVice”。
摘要 — 我们描述了一种新型机电一体化机器人夹持器的设计概念和第一个原型,该夹持器旨在安装在人形机器人上,以实现牢固(即锁定)和稳健的抓握。这种抓握可以理想地支持复杂的多接触运动,例如爬梯子或操纵复杂工具,同时具有节能效果。为此,我们提出了一种解决方案,即设计一种智能自锁欠驱动机构,该机构与执行器并联安装,当实现所需的抓握时自动触发。该设计通过差速齿轮利用夹持器和制动器之间的可调功率分配。我们的夹持器具有自适应、牢固抓握和节能功能的优势,并通过原型夹持器进行了实验。
机器人系统基础单元 - I 简介:机器人解剖学 - 定义、机器人定律、机器人的历史和术语 - 机器人的准确性和重复性 - 简单问题 - 机器人的规格 - 机器人的速度 - 机器人关节和链接 - 机器人分类 - 机器人系统架构 - 机器人驱动系统 - 液压、气动和电气系统。单元 - II:末端执行器和机器人控制:机械夹持器 - 曲柄滑块机构、螺旋式、旋转执行器、凸轮式 - 磁性夹持器 - 真空夹持器 - 气动夹持器 - 夹持力分析 - 夹持器设计 - 简单问题 - 机器人控制 - 点对点控制、连续路径控制、智能机器人 - 机器人关节控制系统 - 控制动作 - 反馈装置 - 编码器、解析器、 LVDT - 运动插值 - 自适应控制。第三单元:机器人变换和传感器:机器人运动学 - 类型 - 2D 和 3D 变换 - 缩放、旋转、平移 - 齐次坐标、多个变换 - 简单问题。机器人中的传感器 - 触摸传感器 - 触觉传感器 - 近距离和范围传感器 - 机器人视觉传感器 - 力传感器 - 光传感器、压力传感器。第四单元:机器人单元设计和微/纳米机器人系统:机器人工作单元设计和控制 - 序列控制、操作员界面、机器人中的安全监控设备 - 移动机器人工作原理、使用 MATLAB 进行驱动、NXT 软件介绍 - 机器人应用 - 材料处理、机器装卸、装配、检查、焊接、喷漆和海底机器人。微/纳米机器人系统概述-缩放效应-自上而下和自下而上的方法-微/纳米机器人系统的执行器-纳米机器人通信技术-微/纳米夹持器的制造-爬壁微型机器人的工作原理-仿生机器人-群体机器人-纳米机器人在靶向药物输送系统中的应用。单元 - V:机器人编程-介绍-类型-柔性吊坠-引导编程,机器人坐标系统,机器人控制器-主要组件,功能-腕部机构-插值-联锁命令-机器人的操作模式,慢跑类型,机器人规格-运动命令,末端执行器和传感器命令。机器人语言-分类,结构-VAL-语言命令运动控制,手动控制,程序控制,拾取和放置应用,使用 VAL 的码垛应用,使用 VAL 程序的机器人焊接应用-WAIT、SIGNAL 和 DELAY 命令使用简单应用程序进行通信。 RAPID-语言基本命令-运动指令-使用工业机器人进行拾取和放置操作-手动模式、自动模式、基于子程序命令的编程。移动-主命令语言-介绍、语法、简单问题。VAL-II 编程-基本命令、应用程序-使用条件语句的简单问题-简单的拾取和放置应用程序。
多年来,为了满足从辅助机器人和假肢到自主操作和物流等广泛应用领域的设计要求和目标,人们设计了多种形式的假手 (Piazza et al., 2019)。此外,这些设计要求和目标也在不断发展。例如,过去用于自主操作任务的夹持器的设计主要由对稳健性和安全性的需求驱动;如今,需要能够适应外部和非结构化环境并与人类交互的解决方案 (Piazza et al., 2019; Bhatia et al., 2019)。事实上,工业 4.0 范式正在积极推动生产线上的人机协作 (Matsas et al., 2018)。标准工业夹持器通常采用两点或三点捏合抓握,因此与人类的抓握能力相比是有限的 (Kappassov et al., 2013)。因此,使夹持器能够模仿人手的外观和力学原理的可能性代表着朝着多个目标迈出了一步。假肢也需要改进的功能和拟人化的外观(Ten Kate 等人,2017 年)。尽管这两个应用领域存在内在差异,但它们在设计和控制方面都需要廉价且不太复杂的解决方案(Ten Kate 等人,2017 年;Piazza 等人,2019 年)。增材制造 (AM) 技术、硬件组件的持续开发和小型化以及开源硬件的可用性(Piazza 等人,2019 年)在假手的演变中发挥着根本性的作用。3D 打印机械手和 3D 打印软机器人解决方案(Truby 等人,2019 年;Piazza 等人,2019 年)是该领域的两个新兴趋势。 AM 技术有助于降低这些机器人设备的复杂性和生产工作量(Tian 等人,2017 年),例如,可以减少零件总数。还开发了 4D 打印夹持器的尖端示例(Ge 等人,2016 年)。它们的功能归因于形状的固有属性
Pneumax 提供全面的夹紧装置、枢轴装置、销钉套件以及夹持器和完整的多轴定位系统。该产品由专业技术人员团队开发,旨在确保最大的可靠性、精度和可重复性,符合最新的国际安装标准。特别注重能源效率,通过专利设计提供市场上最大的节能解决方案。