4.1 简介 ................................................................................................................ 58 4.2 最先进的氮化镓衬底 ................................................................................ 59 4.2.1 块状单晶 GaN 衬底 ........................................................................ 59 4.2.2 异质衬底上的 GaN:蓝宝石和碳化硅 ........................................................ 61 4.2.3 硅衬底上 GaN 技术与块状硅和绝缘体上硅 (SOI) 衬底的集成 ............................................................................................................................. 63 4.3 SOI 和块状 Si 衬底上 AlGaN/GaN 异质结构的生长和特性 ............................................................................................................. 66 4.3.1 实验细节 ........................................................................................................ 66 4.3.2 AlGaN/GaN 异质结构的生长 ............................................................................................. 66 4.3.3 结果与讨论 ............................................................................................................. 69 4.4 制备和特性体硅和 SOI 衬底上的 HEMT ...................................................................................... 78 4.4.1 实验细节 ...................................................................................................... 78 4.4.2 AlGaN/GaN HEMT 电气特性 ...................................................................... 78 4.4.3 使用微拉曼分析探测 AlGaN/GaN HEMT 通道温度 ............................................................................................................. 82 4.5 章节摘要 ............................................................................................................. 96
1 简介 讨论风洞中测试室的文献有限。主要原因是由于测试室的静态对称性,设计简单,要么使用圆形、正方形或矩形横截面,也与已经从收缩室流向测试室的流体有关 [1]。与空气动力学测试、湍流研究或风工程中的文章相关,它表明风洞在提供数据以分析样品与流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试颗粒的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因热量而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩
1 简介 讨论风洞中测试室的文献有限。主要原因是由于测试室的静态对称性,设计简单,要么使用圆形、正方形或矩形横截面,也与已经从收缩室流向测试室的流体有关 [1]。与空气动力学测试、湍流研究或风工程中的文章相关,它表明风洞在提供数据以分析样品与流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试颗粒的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因热量而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩
与刚性印刷电路板 (PCB) 和柔性 PCB 相比,软电路具有更高的稳健性和更好的机械阻抗匹配性,可与更广泛的宿主表面(包括纺织品和人体软组织)匹配。然而,可拉伸电子产品开发中的一个关键挑战是使用可印刷油墨的能力,这种油墨在 > 100% 的大应变下仍能保持高电导率和稳定的走线电阻。一种有前途的方法来创建具有低机电耦合的柔软、可拉伸和可印刷电子产品,就是将微流体通道或液态金属 (LM) 液滴整合到软弹性体中。[8,9] 镓基 LM,例如共晶镓铟 (EGaIn),因其高导电性、低流体粘度和可忽略不计的毒性而特别受欢迎。[10] 然而,制造带有 LM 导体的电路通常需要大量劳动力,并且需要许多手动步骤。由于 LM 的粘度低、表面张力高且与基板的粘附性差,直接打印 LM 也具有挑战性。因此,研究人员试图提出创新技术,以打印基于 LM 的电路。在一项研究中,EGaIn 沉积在印刷的 Ag 纳米墨水上,以实现电导率提高 6 个数量级、应变耐受极限提高 20 倍以上。[11] EGaIn 还用于选择性润湿光刻图案化的铜 (Cu) 走线,以创建高性能集成电路 [12],并且还沉积在电纺弹性纤维垫上,以获得具有高导电性和可拉伸性的薄膜导体。[13] 在另一项最近的研究中,LM 和银薄片悬浮在热塑性弹性体中,并用于具有极高拉伸性 (2500%) 的摩擦电纳米发电机。 [14] 其他努力包括利用 EGaIn 液滴渗透网络,无论是印刷迹线的形式 [15,16,17] 还是由悬浮在弹性体基质中的 LM 液滴组成的橡胶复合材料。[18,19,20] 然而,这些使用 LM 液滴印刷软电子器件的方法需要额外的热、光学或机械烧结步骤,以及其他形式的后处理以诱导电导率,并且印刷适性对于与微电子集成的应用受到限制
摘要 — 氧化镓 (Ga 2 O 3 ) 是一种新兴的超宽带隙半导体,在辐射探测中的应用引起了广泛关注。在本文中,我们利用金属有机化学气相沉积 (MOCVD) 在蓝宝石上生长的高电阻率非故意掺杂 (UID) ε-Ga 2 O 3 薄膜制造了超快 X 射线探测器。该探测器采用横向金属半导体金属 (MSM) 结构,在 100 V 时表现出 < 2 nA 的低暗电流,在 40 V 和 X 射线剂量率为 0.383 Gy/s 时其灵敏度高达 28.6 nC/Gy 或 ∼ 1 . 0 × 10 6 nC/(Gy · cm 3 )。在切换 X 射线照明下观察到探测器稳定且可重复的瞬态响应。此外,该探测器实现了全宽50 ns的脉冲X射线探测,其时间分辨率约为7.1 ns。这些结果表明,MOCVD生长的高电阻率UID ε-Ga 2 O 3薄膜在超快X射线探测方面具有巨大的潜力。
产品描述 20 W GaN SSPA 是一款小巧轻便的放大器,旨在与多频段调制解调器和无线电配对使用 - 既可以独立用于仅传输系统,也可以与其他组件集成以形成双工系统。我们的 20 W GaN SSPA 放大器是一款使用氮化镓 (GaN) 技术构建的多频段双输出固态功率放大器 (SSPA)。我们的 RF 放大器由一个电源、四个独立的固态功率放大器和一个数字控制部分组成。RS-422 接口提供温度监视器、RF 输出功率电平检测和 VSWR 故障状态。RS-422 接口还提供对 RF 功率放大的频段选择和 RF 信号消隐能力的控制。这种多频段 SSPA 可以在射频 (RF) 频谱的 L 波段、S 波段、下 C 波段或上 C 波段中进行选择和操作。我们的 GaN 多频段 SSPA 设计用于多种 L3Harris 产品。
检测低功率和高功率光的短脉冲 能够在恶劣环境和很宽的温度范围内工作 大动态范围 在感应到明亮目标后,快速过载恢复以检测后续信号 承受高光功率密度,提高探测器的损伤阈值 除了这些标准之外,许多 LRF 和 LiDAR 系统设计都会受益于在传输和接收过程中使用光纤,以改善系统热管理并降低整体系统噪音 (1) 。许多国防应用都需要商用现货 (COTS) 组件,因为 COTS 更容易获得且更具成本效益。CMC 推出了一系列新的 COTS 尾纤 SMT 封装铟镓砷 (InGaAs) 雪崩光电二极管 (APD) LIDAR/LRF 接收器,276-339832-VAR,根据 MIL-STD 规格进行设计、测试和验证。这款 COTS APD 接收器提供的性能可以更准确地检测更长距离的小目标。坚固的光纤尾纤封装有利于节省空间和简化系统集成,同时满足 MIL-STD 环境操作条件。
激光剥离 (LLO) 通常用于将功能薄膜与下面的基板分离,特别是将基于氮化镓 (GaN) 的发光二极管 (LED) 从蓝宝石中分离出来。通过将 LED 层堆栈转移到具有定制特性的外来载体(例如高反射表面),可以显著提高光电器件的性能。传统上,LLO 是使用纳秒级的紫外激光脉冲进行的。当指向晶圆的蓝宝石侧时,蓝宝石/GaN 界面处的第一层 GaN 层吸收脉冲会导致分离。在这项工作中,首次展示了一种基于 520 nm 波长的飞秒脉冲的 LLO 新方法。尽管依赖于亚带隙激发的双光子吸收,但与传统的 LLO 相比,超短脉冲宽度可以减少结构损伤。在详细研究激光影响与工艺参数的关系后,我们开发了两步工艺方案,以制造边长可达 1.2 毫米、厚度可达 5 微米的独立 InGaN/GaN LED 芯片。通过扫描电子显微镜和阴极发光对分离的芯片进行评估,结果显示 LLO 前后的发射特性相似。
摘要 — Ga 2 O 3 的低热导率可以说是 Ga 2 O 3 功率和射频器件最严重的问题。尽管进行了许多模拟研究,但是还没有关于大面积封装 Ga 2 O 3 器件热阻的实验报告。这项工作通过展示 15-A 双面封装 Ga 2 O 3 肖特基势垒二极管 (SBD) 并测量其在底部和结侧冷却配置下的结到外壳热阻 (R θ JC) 来填补这一空白。R θ JC 特性基于瞬态双界面法,即 JEDEC 51-14 标准。结冷和底部冷却的 Ga 2 O 3 SBD 的 R θ JC 分别为 0.5 K/W 和 1.43 K/W,前者的 R θ JC 低于同等额定值的商用 SiC SBD。这种低 R θ JC 归因于直接从肖特基结而不是通过 Ga 2 O 3 芯片进行散热。R θ JC 低于商用 SiC 器件,证明了 Ga 2 O 3 器件在高功率应用中的可行性,并表明了适当封装对其热管理的重要性。索引术语 — 超宽带隙、氧化镓、封装、肖特基势垒二极管、热阻。
红外探测与现代微电子技术的融合为紧凑型高分辨率红外成像提供了独特的机会。然而,作为现代微电子技术的基石,硅由于其带隙为 1.12 eV,只能探测有限波长范围(< 1100 nm)内的光,这限制了其在红外探测领域的应用。本文提出了一种光驱动鳍片场效应晶体管,它打破了传统硅探测器的光谱响应限制,同时实现了灵敏的红外探测。该装置包括用于电荷传输的鳍状硅通道和用于红外光收集的硫化铅薄膜。硫化铅薄膜包裹硅通道形成“三维”红外敏感栅极,使硫化铅-硅结处产生的光电压能够有效调节通道电导。在室温下,该器件实现了从可见光(635 nm)到短波红外区域(2700 nm)的宽带光电探测,超出了常规铟镓砷和锗探测器的工作范围。此外,它表现出 3.2×10 −12 的低等效噪声功率