摘要 — 介绍了一种新型四轴飞行器的概念设计和飞行控制器。该设计能够在飞行过程中改变无人机的形状,以实现位置和姿态控制。我们考虑动态重心 ( CoG ),它会导致无人机的转动惯量 ( MoI ) 参数不断变化。这些动态结构参数在系统的稳定性和控制中起着至关重要的作用。四轴飞行器臂长是一个可变参数,它由基于姿态反馈的控制律驱动。MoI 参数是实时计算的,并纳入系统的运动方程中。无人机利用螺旋桨的角运动和可变的四轴飞行器臂长进行位置和导航控制。重心的运动空间是一个设计参数,它受执行器限制和系统稳定性要求的限制。提供了有关运动方程、飞行控制器设计和该系统可能应用的详细信息。此外,通过航路点导航任务和复杂轨迹跟踪的比较数值模拟对所提出的变形无人机系统进行了评估。
系统电源由位于飞行员仪表板右下方标有 STBY PWR ON/OFF/TEST 的开关控制。飞机机头处有一个单独的 10.5 安培小时密封铅酸电池组。充满电后,如果飞机完全断电,电池至少可以运行 3.5 小时。电池组由飞机的电气系统不断充电,因此在断电时应充满电。STBY PWR 开关必须处于 ON 状态才能自动切换电池电源。当 SFD 处于 ON 状态且飞机的电气系统未对应急电源电池充电时,STBY PWR 开关旁边的琥珀色 ON 灯会亮起。当 SFD 开关保持在弹簧加载的 TEST 位置时,电池和电路的自检完成。向显示系统施加 28V 直流电会启动姿态初始化过程,该过程由 SFD 上显示的“姿态初始化”消息来识别。初始化过程持续时间通常小于180秒。
2022 年,Blue Canyon 为 NASA Artemis I 任务的 10 颗立方体卫星中的 8 颗提供了 XACT 姿态控制系统和 XB1 航空电子解决方案,这些立方体卫星是次要有效载荷。50 多年前阿波罗计划结束后,我们很自豪能够成为重返月球探索的一部分。
高精度望远镜 (HPT)、带液晶可调滤波器的空间多光谱成像仪 (SMI w/ LCTF)、中场相机 (MFC)、广角相机 (WFC)、增强分辨率相机 (ERC)、业余无线电装置 (ARU)、天顶太阳传感器模块 (SAS-Z) 和扩展姿态控制单元 (ACU-Ex)
摘要 本文提出了一个综合框架,通过集成二阶滑模控制 (2-SMC) 和基于机器学习和人工智能的先进异常检测和预测系统来提高四旋翼无人机的安全性和可靠性。本文提出了一种新的滑动流形方法,分为两个子系统,用于精确的位置和姿态跟踪,解决了设计四旋翼控制器的挑战。本文还使用 Hurwitz 稳定性分析对滑动流形的非线性系数进行了详细分析。它通过大量的模拟结果证明了所提方法的有效性。为了进一步评估四旋翼的安全性和可靠性,将异常检测和预测系统与位置和姿态跟踪控制相结合。该系统利用机器学习和人工智能技术实时识别和预测异常行为或故障,使四旋翼能够快速有效地应对危急情况。所提出的框架为设计四旋翼无人机的稳健和安全控制器提供了一种有前途的方法。它展示了先进的机器学习和人工智能技术在提高自主系统安全性和可靠性方面的潜力。
收到日期:2024 年 7 月 24 日。修改后收到日期:2024 年 11 月 12 日。接受日期:2024 年 11 月 18 日。摘要该研究的目的是设计和模拟用于低地球轨道 CubeSat 纳米卫星姿态控制的稳定系统。电子系统位于机械系统内部,在 Proteus 中设计。机械系统在 SolidWorks 中设计,然后下载 CubeSat 3U CAD 进行仿真,最后组装所有 CAD 设计。这些数据用于分析气动阻力、梯度、重力和磁场的空间环境扰动。通过分析欧拉、泊松和四元数方程来完成姿态表示。然后,创建了一个模糊逻辑控制,并给出了两种自动控制案例。分析和虚拟现实模拟表明,CubeSat 3U 纳米卫星的姿态控制正确,考虑到空间环境的扰动和每个轴的新 25° 方向。关键词:模糊控制;模拟;虚拟现实;机电稳定系统;低地球轨道。
从起飞到降落,StableLight 的增稳和姿态保持功能始终有效,对飞行员来说工作透明,无需向操纵杆反馈。在危险环境和不同级别的任务复杂度下,其独有的先进上部模式可提供无与伦比的飞机精度并减轻飞行员的工作量,帮助更高效、快速、安全地完成任务。
摘要:本文提出了一种考虑复杂舰船运动和风环境的舰载机自动着舰控制律,具体为预瞄控制与自适应非线性控制的综合策略。首先,在姿态控制环中采用增量非线性反步控制律,以提高飞机的抗干扰能力。其次,为提高恶劣海况下的下滑道跟踪性能,对舰载机运动进行预测,并将预测的运动引入最优预瞄控制制导律中,以补偿舰载机运动带来的影响。然而,预瞄控制本质上是一种最优控制律,需要建立状态空间模型,因此内环与外环控制的综合并不是那么简单。因此,需要对姿态-高度高阶系统模型进行低阶等效拟合,此外,还需要为低阶等效系统设计状态观测器,为着舰控制器提供所需状态。最后,为验证所提方法,以无人无尾机模型在不同海况下执行自动着舰任务,结果表明,自动着舰系统即使在恶劣海况下也能保证令人满意的着舰精度和成功率。
航天器概述:6U CubeSat 加满燃料后重约 14 千克,包括电源、命令和数据处理、通信、姿态控制、推进和有效载荷子系统。电源子系统包括由 Blue Canyon Technologies (BCT) 和 MMA 开发的四个太阳能电池阵列、一个电力系统 (EPS) 管理板和一个由 Panasonic NCR18650B 电池制成的电池。这些阵列在使用寿命结束时能够提供超过 55W 的功率。命令和数据处理 (C&DH) 由 JPL 开发的 Sphinx 单板计算机提供,其中包括一个 GR712RC 抗辐射微处理器和一个 ProASIC3 FPGA。飞行软件采用 JPL 的 F Prime 框架。航天器使用 Iris Radio,这是 JPL 开发并由犹他州立大学空间动力学实验室建造的小型卫星转发器。一对低增益天线位于航天器 Z 轴的两端,提供与航天器方向无关的发射和接收能力。航天器的姿态确定和控制系统 (ADCS) 由 BCT XACT-50 提供。它利用安装在航天器周围的太阳传感器以及内部星体跟踪器和三个内部反作用轮。