1 摘要 — 基于超快光电探测器中的光外差(光)混合的 THz 源非常有前景,因为它们在室温下工作,可能结构紧凑、成本高效,并且最重要的是频率可调性广。然而,它们的广泛使用目前受到 THz 频率下 µW 范围的可用功率水平的阻碍。我们在此介绍一种行波结构,其 THz 频率下的相干长度为毫米级,为大有源面积(~4000 µm 2 )光混合设备开辟了道路,该设备能够处理超过 1 W 的光泵浦功率,远远超出了使用小有源面积(<50 µm 2 )的标准集总元件设备的能力,需要保持与 THz 操作兼容的电容水平(<10 fF)。它基于氮化硅波导,该波导耦合到嵌入共面波导中的膜支撑低温生长 GaAs 光电导体。根据本研究详细阐述的该器件的光电子模型,预计毫瓦级功率可达到 1 THz,甚至高于 1 µW,最高可达 4 THz。实验中,使用两个 780 nm-DFB 激光器产生的拍音测量 1 毫米长结构的频率响应,最高可达 100 GHz,清楚地显示了预期的行波特征,即当反向行波的贡献完全消除时,衰减 6 dB,最终达到 ~50 GHz,随后达到 ~100 GHz 的恒定水平。在行波状态下进行操作的实验演示是实现该概念在功率水平和频率带宽方面的最初承诺的第一步。
欢迎使用CS 860:量子下限。由于19日的情况,本课程将以异步形式在线教授:将没有现场讲座。每周,我打算在该一周内发布有关材料的一些课程注释,发布一些论文供所有学生阅读,并让一两个学生自愿发布这些论文的评论。然后,我们将讨论有关广场的论文和本周的材料(所有学生和审计师都应加入Piazza)。如果学生对课程有不同格式的偏好或想法,请在广场上配音。我强烈鼓励所有学生积极参加广场页面,这将是我们与教室最接近的事情。在材料方面,本课程将重点放在量子下限上:表明某些任务没有快速的量子算法的方式。我们将主要在黑匣子模型中证明这样的下限,也称为查询复杂性模型。该模型具有两个不错的属性:首先,它很简单且易于处理,证明其下限实际上是可行的(这并不会导致诸如\ sansp vs. \ sansn \ sansp之类的问题,而证明下限非常具有挑战性)。第二,大多数量子算法,例如Shor的算法和Grover的算法,具有自然的查询复杂性,并且可以有效地看作是查询复杂性算法。这意味着该模型尽管很简单,但足够丰富,可以捕获我们关心的``现实世界''量子加速的类型。本课程不需要量子背景。推荐了一些数学成熟度。在课程的后期,我们还将介绍通信复杂性模型,并研究如何在该环境中显示下限。通信复杂性下限通常更具挑战性,并且与理论计算机科学的其他部分有着深厚的联系。
欢迎使用CS 860:量子下限。由于19日的情况,本课程将以异步形式在线教授:将没有现场讲座。每周,我打算在该一周内发布有关材料的一些课程注释,发布一些论文供所有学生阅读,并让一两个学生自愿发布这些论文的评论。然后,我们将讨论有关广场的论文和本周的材料(所有学生和审计师都应加入Piazza)。如果学生对课程有不同格式的偏好或想法,请在广场上配音。我强烈鼓励所有学生积极参加广场页面,这将是我们与教室最接近的事情。在材料方面,本课程将重点放在量子下限上:表明某些任务没有快速的量子算法的方式。我们将主要在黑匣子模型中证明这样的下限,也称为查询复杂性模型。该模型具有两个不错的属性:首先,它很简单且易于处理,证明其下限实际上是可行的(这并不会导致诸如\ sansp vs. \ sansn \ sansp之类的问题,而证明下限非常具有挑战性)。第二,大多数量子算法,例如Shor的算法和Grover的算法,具有自然的查询复杂性,并且可以有效地看作是查询复杂性算法。这意味着该模型尽管很简单,但足够丰富,可以捕获我们关心的``现实世界''量子加速的类型。本课程不需要量子背景。推荐了一些数学成熟度。在课程的后期,我们还将介绍通信复杂性模型,并研究如何在该环境中显示下限。通信复杂性下限通常更具挑战性,并且与理论计算机科学的其他部分有着深厚的联系。
摘要:在国家篮球协会(NBA)的背景下,在包括体育和篮球在内的各种应用领域中使用了机器学习和知识发现中的预测模型,在这里可以找到相关的预测问题。在本文中,我们应用了监督的机器学习来检查NCAA篮球联盟中的历史和统计数据以及来自NCAA篮球联赛球员的功能,并解决了自动识别NCAA篮球运动员的预测问题,具有极好的机会达到NBA并获得成功。这个问题不容易解决;除其他困难外,许多因素和高度不确定性可能会影响篮球运动员在上述情况下的成功。解决这个预测问题的主要动机之一是为决策者提供相关信息,从而帮助他们改善雇用判断。为此,我们的目标是实现产生可解释的预测模型表示和令人满意的准确性水平的优势,因此,考虑到可解释性和预测精度之间的交易,我们已经投资于白盒分类方法,例如诱导决策树,以及逻辑回归。但是,作为基准,我们认为相关方法是黑框模型的参考。此外,在我们的方法中,我们探索了这些方法与遗传算法相结合,以提高其预测精度并促进特征降低。此外,分析还强调了哪些特征在模型中最重要。结果已经对结果进行了彻底的比较,并且已经强调了表现出色的模型,从而揭示了最佳白盒和黑匣子模型之间的预测精度差异很小。遗传算法和逻辑回归的配对特别值得注意,超过其他模型的预测精度和显着的特征降低,有助于结果的解释性。
BIHAR印度摘要本研究论文探讨了Lindhard筛选理论在研究各种系统中研究有效电子相互作用的应用。 由丹麦物理学家詹斯·林德哈德(Jens Lindhard)开发的Lindhard理论描述了周围电子气体对测试电荷的筛选。 通过应用这一理论,我们可以深入了解不同环境中电子的行为,并了解它们之间的相互作用。 Lindhard筛选理论提供了对许多人体电子气体内电子相互作用的基本理解。 本文探讨了Lindhard理论的理论基础,其数学公式及其对金属中有效电子电子相互作用的影响。 通过检查电子气体对扰动的响应,得出了Lindhard功能,并分析了其对筛选库仑相互作用的影响。 在理解金属的电和热性能中的应用以及超导性和等离子体激发等复杂现象。 关键字:筛选效果,扰动,费米 - 迪拉克分布功能,免费电子模型,费米操作员,Hartree-fock Hamiltonian,Bose Systems,基态能量1. 引入冷凝物理物理学中,了解金属中电子之间的相互作用对于解释各种物理特性和磁性行为至关重要。 金属中的电子通过库仑力相互作用,但是这些相互作用是通过其他电子的存在来改变的。 Lindhard理论,由J.Lindhard于1954年制定。BIHAR印度摘要本研究论文探讨了Lindhard筛选理论在研究各种系统中研究有效电子相互作用的应用。由丹麦物理学家詹斯·林德哈德(Jens Lindhard)开发的Lindhard理论描述了周围电子气体对测试电荷的筛选。通过应用这一理论,我们可以深入了解不同环境中电子的行为,并了解它们之间的相互作用。Lindhard筛选理论提供了对许多人体电子气体内电子相互作用的基本理解。本文探讨了Lindhard理论的理论基础,其数学公式及其对金属中有效电子电子相互作用的影响。通过检查电子气体对扰动的响应,得出了Lindhard功能,并分析了其对筛选库仑相互作用的影响。在理解金属的电和热性能中的应用以及超导性和等离子体激发等复杂现象。关键字:筛选效果,扰动,费米 - 迪拉克分布功能,免费电子模型,费米操作员,Hartree-fock Hamiltonian,Bose Systems,基态能量1.引入冷凝物理物理学中,了解金属中电子之间的相互作用对于解释各种物理特性和磁性行为至关重要。电子通过库仑力相互作用,但是这些相互作用是通过其他电子的存在来改变的。Lindhard理论,由J.Lindhard于1954年制定。让我们探讨林德哈德筛选理论的理论基础,以研究有效的电子电子相互作用。电子电子相互作用在确定固体的性质中起着至关重要的作用。Lindhard筛选理论通过描述电子方式相互筛选的方式提供了一种强大的工具来理解这些相互作用。由Bloch,Bethe,Wilson和其他人在1930年代开发的金属的电子结构理论假设可以忽略电子电子相互作用,并且固态物理学包括基于晶体对称性和原子价的知识来计算和填充电子带。在很大程度上,这起作用。在简单的化合物中,可以通过确定在非相互作用计算中填充频带来可靠地确定系统是绝缘子还是金属。带间隙为
加拿大北部社区的原住民正在经历气候变化带来的最严重的灾难性影响,因为北极地区的变暖速度是世界其他地区的两倍。矛盾的是,这种温度升高可以归因于北极地区几乎完全依赖的化石燃料发电。目前,柴油是大多数北极社区的主要电力来源。除了温室气体和其他空气污染物外,这种情况还暴露了燃料运输和储存过程中的石油泄漏风险。此外,随着气温升高,运输燃料成本高昂,冰路更难维护。因此,北部政府承受着燃料价格上涨和供应波动加剧的负担。为了减少对柴油的依赖,本研究建立了多目标综合能源系统,以处理为北极环境和其他偏远社区设计能源系统的复杂权衡。该工具使用遗传算法通过动态模拟同时最小化微电网系统的能源平准化成本和燃料消耗。组件子模型模拟结果通过业界和学术界认可的能源建模工具进行了验证。与之前的能源建模平台相比,所提方法的新颖之处在于考虑了相互冲突的设计目标之间的帕累托前沿权衡,从而更好地支持从业者和政策制定者。该方法的功能性通过位于西北地区最北端的萨克斯港的案例研究进行了展示。该算法选择了完全混合的风能-太阳能-电池-柴油系统,因为它在技术、经济和环境方面最适合该社区。通过对模型结果进行系统故障分析来评估结果的稳健性。总体而言,该建模框架可以帮助决策者确定能源政策的权衡,以使加拿大北极地区和其他偏远社区转向更可持续和清洁的能源。
本研究应对在国际象棋中区分人类和计算机产生的游戏的挑战,对于确保在线和锦标赛的完整性和公平性至关重要。随着未经授权的计算机援助变得越来越复杂,我们利用顺序的神经网络来分析大量的国际象棋游戏数据集,采用了传统引擎(例如Stockfish和Leela),以及Maia的创新神经网络,例如Maia及其单个子模型。此分析将centipawn偏差指标纳入了衡量典型的计算机策略,迈亚对人类和特质游戏风格的见解以及对移动的时间分布的评估。我们的方法通过考虑移动序列的战略含义以及在不同的游戏条件下游戏的一致性而扩展,从而增强了我们对人与AI游戏之间细微差异的理解。值得注意的是,我们的算法在识别国际象棋发动机的使用方面达到了约98%的准确性,从而在维持游戏的完整性方面做出了重大进步。为了进一步验证我们的发现,我们使用单独的数据集进行了交叉验证,从而确认了模型的鲁棒性。我们还探索了该算法在其他棋盘游戏中检测AI援助的适用性,这表明其更广泛使用的潜力。这项研究强调了机器学习在打击数字作弊方面的关键作用,强调需要连续适应检测方法以保持发展的发展。此外,我们的发现指出了为游戏中使用AI的道德准则的重要性,从而确保了所有参与者的公平和水平的竞争环境。最后,通过发布我们的方法论和AI检测的标准,我们旨在促进游戏社区内和开发人员之间的公开对话,从而促进透明度和合作,以打击作弊。
量子场论 (QFT) 起源于 20 世纪 40 和 50 年代为基本粒子定义相对论量子力学理论的尝试。如今,这个术语用于描述从基本粒子到凝聚态物理等各种物理现象的计算框架,该框架基于路径积分,即广义函数空间上的测度。此类测度的数学构造和分析也称为建设性 QFT。本工作联合会将首先介绍一些背景材料,然后探讨近年来基于随机偏微分方程 (SPDE) 视角的一些进展,对于这些方程,QFT 测度是平稳测度。物理学家 Parisi 和 Wu [PW81] 首次观察到 QFT 和 SPDE 之间的联系,这种联系被称为随机量化。从随机量化程序中导出的这些 SPDE 的解理论和解的性质的研究促进了奇异 SPDE 解理论的实质性进展,尤其是过去十年中规则结构理论 [Hai14b] 和准受控分布理论 [GIP15] 的发明。此外,随机量化使我们能够引入更多工具(包括 PDE 和随机分析)来研究 QFT。本 Arbeitsgemeinschaft 的重点将以 QFT 模型(例如 Φ 4 和 Yang-Mills 模型)为例,讨论随机量化和 SPDE 方法及其在这些模型中的应用。其他模型(例如费米子模型、sine-Gordon 和指数相互作用)也将在一定程度上得到讨论。我们将介绍正则结构和准受控分布的核心思想、结果和应用,以及与这些模型相对应的 SPDE 的局部解和全局解的构造,并使用 PDE 方法研究这些 QFT 的一些定性行为,以及与相应的格点或统计物理模型的联系。我们还将讨论 QFT 的一些其他主题,例如威尔逊重正化群、对数索伯列夫不等式及其含义,以及这些主题与 SPDE 之间的各种联系。
容错通用量子计算机有望有效模拟大量量子哈密顿量的幺正演化 [1-3],包括与凝聚态 [4]、量子化学 [5] 和亚原子物理 [6] 相关的哈密顿量。尤其是,它们将有助于解决量子多体现象模拟中面临的指数壁问题 [7]。大多数数字量子模拟 (DQS) 策略都需要用于准备复杂量子态的算法。在某些情况下,例如混合变分方法 [8] 和相位估计 [9],只要与目标精确态的重叠足够大,准备近似量子态是一种有效的方法。然而,随着自由度数量的增加,这种重叠预计会呈指数级小 [10]。该问题的解决方案是通过 DQS 进行参数绝热演化 [11]。从一个容易获得基态的哈密顿量开始,慢慢地添加额外的项,根据绝热定理 [ 12 ],系统的量子态保持在新哈密顿量的基态。绝热参数演化理论的核心概念是 Berry 相 [ 13 ]。当哈密顿量在参数空间中沿闭合路径绝热循环时,波函数除了动态相外,还获得几何相 [ 13 ]。Berry 相在量子理论的多个领域起着至关重要的作用 [ 14 ],包括我们对分子电子特性的理解 [ 15 ]、纳米磁体 [ 16 , 17 ]、固体 [ 18 , 19 ],以及量子物质的拓扑理论 [ 20 , 21 ]。具体而言,Berry 相可以作为不同类别哈密顿量的拓扑分类的量化指标,包括一维对称保护的拓扑绝缘体 [ 22 – 24 ]、带间隙的自旋液体 [ 25 ] 和相互作用的费米子模型 [ 26 ]。作为量子模拟的主要平台之一,超导量子比特已被用来探索拓扑
1 医学生物学作为一门科学,是生物学和遗传学史上的标志 2 细胞和人体的化学组成。生物分子中的化学键 3 生物聚合物、一般结构、脂质、多糖 4 蛋白质结构 5 蛋白质功能 6 原核细胞和真核细胞的结构 7 生物膜(结构、功能) 8 膜蛋白和膜转运 9 细胞器(概述、结构、功能) 10 细胞骨架系统 - 概述、中间丝 11 细胞骨架系统 - 微管、微丝 12 导致发现 DNA 作为遗传信息载体的实验 13 核酸结构 14 原核生物和真核生物基因组(特征和差异) 15 人类基因组的结构(组蛋白、核小体、染色质) 16 线粒体基因组 17 DNA 复制 18 原核生物和真核生物中 DNA 复制的比较 19 DNA 损伤的类型及其原因 20 DNA 修复机制(NER、BER、错配修复 21 DNA 双链断裂修复 22 染色体不稳定性和非整倍性 23 分子生物学的中心法则,原核和真核基因 24 RNA 分子的类型和转录的一般特征 25 原核生物的转录 26 真核生物的转录 27 真核生物的转录后修饰 28 RNA 编辑和逆转录 29 遗传密码 30 tRNA 和氨酰基-tRNA 合成酶,核糖体结构 31 翻译 32 翻译后修饰 33 蛋白质折叠和蛋白质降解,蛋白质分选 34 原核生物基因表达调控-操纵子模型,示例 35 真核生物基因表达调控(概述) 36 转录水平的调控,转录因子 37 转录后水平的表达调控(从细胞核输出,mRNA退化,非
