将 PBMC 和支气管抽吸物部分放入三块 6 孔板中,在 37°C 和 5% CO 2 条件下培养 24 小时,培养液为 RPMI 1640 培养基(PAA Laboratories,美国),培养基中添加抗生素(1% 青霉素-链霉素-新霉素,Sigma Aldrich,美国),培养液为不同浓度的 nivolum-ab(5 µg/mL、10 µg/mL、20 µg/mL 培养物)(Bristol-Myers Squibb,美国)或 atezolizumab(150 µg/mL、300 µg/mL、600 µg/mL 培养物)(Roche,法国)。培养方法如图 1 所示。培养完成当天,从培养孔中回收细胞,并进行免疫表型分析。将外周血和支气管抽吸物中不用于培养的对照细胞分装到流式细胞仪管中,与一组单克隆抗体在 4°C 下孵育 30 分钟。然后用不含 Ca 2+ 和 Mg 2+ 离子的 PBS 缓冲液(离心参数:2000 rpm/5 分钟)洗去未结合抗体的残留物,并在流式细胞仪中对细胞免疫表型进行详细分析。反过来,将用单独的抗PD-1或抗PD-L1抗体进行短期培养的细胞在孵育24小时后,与结合有适当荧光染料的选定抗体(抗CD4-FITC、抗CD274-FITC、抗CD14-FITC、抗CD8-PE、抗CD14-PE、抗CD25-APC、抗CD69-APC、抗CD95-APC、抗CD279-APC(Becton Dickinson,美国))孵育。
(◀图 4) B. 与 pHrodo 染料结合的双环和转铁蛋白与细胞一起孵育 18 小时,并在 Incucyte 上进行分析。C. 和 D. 将 HT1080 细胞接种过夜。将细胞在无血清培养基中孵育 60 分钟,温度为 37 °C。对于 D. 细胞在 37 °C 下用载体 (0.1% DMSO) 或 Dyngo 4a (30 µM) 预处理 30 分钟。然后将细胞与结合的双环 (1.0 µM;红色) 在 4 °C 下孵育 1 小时。然后将细胞转移到 37 °C 下 1.5 分钟以进行内吞。洗涤后,在 -20 °C 下用 80% 丙酮固定和透化细胞 10 分钟。然后将细胞在 10% 山羊血清中封闭 1 小时,并用一抗 (指示) 标记。然后用二抗(绿色)和 Hoechst(蓝色)清洗细胞并标记。三重培养孔的代表性图像。放大 40 倍。(▲ 图 5)A. 和 B. 新鲜分离的人类近端曲小管细胞接种在 transwell 插入物中,Bicycles 测试浓度为 10μM。通过质谱法测量极化细胞的跨上皮吸收和分泌通量。结果标准化为基线 FITC 标记的转铁蛋白摄取(AB 和 BA)。测量单层完整性(80-120 Ω.cm 2 跨上皮电阻)作为质量控制。
摘要:DNA(脱氧核糖核酸)提取方法是将DNA与样品分离的过程。在此过程中,必须保护获得的DNA免受RNA,碳水化合物,脂质和蛋白质的污染。RNA,碳水化合物,脂质和蛋白质的污染可以增加DNA纯度。 使用通过260 nm和280 nm波长的吸光度比测量的纳米体2000分光光度计测量 DNA纯度。 优质DNA的260 /A 280比率为1.7-2.0,浓度> 0.03 pg。 这项研究旨在获得适当的DNA提取方法(大鼠和鸡肉的混合物)。 这项研究由两个阶段组成:使用easyfast™大鼠检测套件的肉类产品中的easyfast™提取套件的DNA提取阶段和放大阶段。 这项研究使用了16种与大鼠肉浓度的大鼠肉和鸡肉混合物的样品:5、10、15和20%。 在提取阶段,孵育时间优化了15、30、45分钟和1小时。 结果表明,在PCR扩增的结果中,一小时的孵育值最低。 关键字:DNA提取,孵化时间,实时PCR电子邮件:hadi_sunaryo@uhamka.ac.ac.id 1,apewewirman@gmail.com 2,etindiah_permanasari@uhamka.ac.ac.ac.id 3 desi.nurjanah@gazi.edu.tr 6 *通讯作者RNA,碳水化合物,脂质和蛋白质的污染可以增加DNA纯度。DNA纯度。优质DNA的260 /A 280比率为1.7-2.0,浓度> 0.03 pg。这项研究旨在获得适当的DNA提取方法(大鼠和鸡肉的混合物)。这项研究由两个阶段组成:使用easyfast™大鼠检测套件的肉类产品中的easyfast™提取套件的DNA提取阶段和放大阶段。这项研究使用了16种与大鼠肉浓度的大鼠肉和鸡肉混合物的样品:5、10、15和20%。在提取阶段,孵育时间优化了15、30、45分钟和1小时。结果表明,在PCR扩增的结果中,一小时的孵育值最低。关键字:DNA提取,孵化时间,实时PCR电子邮件:hadi_sunaryo@uhamka.ac.ac.id 1,apewewirman@gmail.com 2,etindiah_permanasari@uhamka.ac.ac.ac.id 3 desi.nurjanah@gazi.edu.tr 6 *通讯作者
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P
抽象背景和目标。视黄酸(RA)是促进正常脊椎动物发育的重要形态,在大多数器官和组织中,其在关键梯度中的工作。RA的外源会在这些器官和组织中引起畸形。目前的研究旨在找出溶解在二甲基亚硫代(DMSO)中的不同浓度6、10mg/ ml的视黄酸对不同胚胎阶段鸡发育的影响。方法。从当地的家禽农场污染的肥沃的家为gallus gallus卵,清洗和消毒,然后分为两组实验,每组一组用于每种浓度。每个实验包含三组,每组10个卵。这些组在四个不同的阶段HH8,HH10,HH15和HH18重复四次。卵在孵育中孵育,以进行要求,然后从孵育中移除并在空气囊中注射RA或(DMSO),或在未经治疗的对照中保留,然后将鸡蛋再孵育24小时。孵育24和48小时后打开卵,收集生存的胚胎并在形态学和组织学上进行评估。结果。该研究表明RA会导致一般的生长迟缓。此外,它会导致小头畸形,颅裂,心脏肿瘤,前肢诱导,直中继。畸形程度取决于发展阶段和RA浓度,是由于高浓度和早期阶段的畸形增加。在早期用10mg/mL处理的胚胎中观察到的显着影响。结论。引用本文。作者。此外,HH8和HH10中RA的作用比在HH15时注射的胚胎和HH18的胚胎的作用更加清晰。这项研究表明,以高于确保正常胚胎发育所必需的剂量的外源性RA治疗会导致严重异常。这表明对类风湿关节炎的胚胎反应非常敏感,尤其是在胎儿神经发生过程中。视黄酸对鸡胚胎发育的影响。Alq J Med App Sci。2023; 6(2):650-660。 https://doi.org/10.5281/zenodo.10015147在多细胞生物,细胞命运和行为的开发过程中引入了几种形态,其作品以精确的梯度调节。视黄酸(RA)是有助于脊椎动物胚胎发展的重要形态学。它是由中胚层组织中的普provicimin A制成的,其中包括视网膜脱水酶家族的成员[1,2]。ra和其他类维生素A及其生理代谢产物对模式发育产生强大的影响,并且可能是调节胚胎发育的形态学之一[3-6]。
摘要矿物磷(P)来源的潜在短缺以及向循环经济的转变激发了在农业中引入新形式的P肥料。但是,P在新肥料中的溶解度及其植物的利用能力可能很低。 在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。 纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。 我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。 ,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。 在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P但是,P在新肥料中的溶解度及其植物的利用能力可能很低。在本实验中,我们在P(28 mg P 2 O 5 kg -1)中孵育了63天的农业土壤,在存在一系列有机和无机性较差的P形式的情况下,在新化肥中常见:羟基磷酸盐(p-Ca),磷酸盐(P-CA),phosprate and phospration(p-ca),P-fe酸(P-CA),phytic Adict and phytic Adict(P-CA) p-org(p-mix)。纤维素和硝酸钾(KNO 3)在孵育开始时加入刺激性微生物活性。我们包括三倍超磷酸(TSP)的阳性对照和无p应用的阴性对照(有和没有纤维素和KNO 3)。,我们评估了随着时间的推移,我们评估了Nahco 3提取物(OLSEN P)中不同可溶的P形式的命运,作为可用植物可用的P.土壤微生物生物量的代理,真菌与细菌比率,土壤含量,土壤含量,酶促活性,酶促酶,含量酶,酸性酶和酸性酶和酸盐酶含量和酸盐酶,酸磷脂酶磷酸盐酶,含水液磷酸盐磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶磷酸盐酶,含水量和酸味酶磷酸盐酶磷酸盐含量。受监控。在孵育开始时,TSP在所有处理中显示出最高的OLSEN P,而P-FE显示出比其他可溶的P形式更高的OLSEN P
利用放射免疫沉淀分析(RIPA)裂解缓冲液(Servicebio,武汉,中国)获得总蛋白。使用双辛可宁(BCA)分析(Solarbio,北京,中国)定量蛋白质浓度。加入上样缓冲液后,将样品煮沸 5 分钟。然后,将 20 μg 蛋白质添加到每个泳道中,通过 8–15% 十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离,然后转移到聚偏氟乙烯(PVDF)膜上,用 5% 脱脂奶粉在含有 0.1% Tween 20 的 Tris 缓冲盐水(TBST)中封闭 2 小时。将稀释的针对 OASL(1:1,000)和 3-磷酸甘油醛脱氢酶(GADPH;1:10,000)的一抗与膜在 4 ℃ 下孵育过夜。用TBST清洗10 min后,与相应抗体孵育2 h,再用TBST清洗膜3次,最后采用电化学发光法(ECL,Thermo,China)观察结果。
吲哚乙酸(IAA)的产生是根际细菌的主要资产,可刺激和增强植物的生长。目前的工作涉及分离和鉴定从石榴酸盐,番石榴和Amla农场收集的根际土壤中产生细菌的吲哚乙酸。在十种吲哚乙酸产生分离株中,选择了两个作为有效的生产者。光谱分析,这表明在37°C下孵育72小时后,分离的细菌在孵育72小时后产生了最大浓度IAA。使用标准IAA曲线测量浓度,并通过AA2获得最大浓度。随后,通过POT分析测试了对植物生长的影响。用AA2分离物进行发芽的豌豆种子的体外处理表现出比对照更好的结果。总而言之,研究表明,IAA产生细菌是促进植物生长的有效接种剂。
1。使用砂浆和杵用液氮将粉末磨粉样品磨成细粉。有关样本中断的详细信息,请参阅第5页。2。将多达25毫克的组织粉转移到新的1.5 ml微量离心管中。注意:对于具有较高细胞数量(例如肝脏或脾脏)的组织样品,将样品输入降低至10 mg。 3。加入200 µL GL1缓冲液和20 µL蛋白酶K溶液。涡流混合。4。将样品在60°C孵育3小时/过夜。偶尔将管子倒转。5。在14,000 x g处离心2分钟,到颗粒不溶性碎片。6。将上清液转移到新的1.5 mL微输出管中。7。加入200 µL GL2缓冲液。涡流混合。8。添加4 µL RNase A溶液。涡旋在室温下混合并孵育5分钟。
图。5:用酪蛋白钝化的悬臂背面的AFM图像在0.5pm T5溶液的溶液中孵育1.5h(箭头标记T5噬菌体或可能的酪蛋白聚集体)请注意,这里的条件与手稿中呈现的原位实验不同。
