科学企业探索极限 (SENTINEL) 计划将为特定宇航员构建微生理系统。这些器官芯片结构将有助于表征和测试预防措施以及个人在太空探索期间的健康风险。它们将与宇航员一起飞行,同时暴露于微重力辐射。将太空飞行对整个人类的影响与对培养器官芯片的影响进行比较将有助于验证平台和检测。TRISH 将致力于实现芯片的自动化和非湿实验室检测,从而减少宇航员收集数据的宝贵时间,并避免将样本返回地球进行分析。该平台将使人们更容易了解近地轨道以外的航天环境的生物学影响,并在个性化健康方面取得业务进展。
项目 TRL* 集成零沸腾系统 4+ 厚多层绝缘层 6 太阳能屏蔽(可选) 7+ 低电导率结构界面 6+ 大容量 20 K 和 90 K 低温冷却器 4+ 低温冷却器集成:广域冷却(罐上管分布式冷却和屏蔽上管分布式冷却)
为期四天的“DAE 原子和连续建模进展研讨会 (DAE-SAACM2024)”全国研讨会由印度孟买 Trombay 巴巴原子研究中心 (BARC) 化学工程组于 2024 年 10 月 23 日至 26 日在 Anushaktinagar 的 DAE 会议中心举办。该研讨会与原子和连续建模学会 (SACM) 联合举办,并得到原子能部 (DAE) 核科学研究委员会 (BRNS) 的支持。原子建模包括电子结构计算和分子动力学模拟,在分子和材料的性质和行为评估中起着决定性的作用——甚至在它们被创造出来之前。此外,机器学习 (ML) 和人工智能 (AI) 加速了分子搜索空间的发展,从而促进了复杂化学系统的设计和开发。由于涉及大量原子且原子间相互作用复杂,原子模拟通常需要大量计算资源。相反,连续体建模可能包含大空间域和长时间尺度,这进一步增加了计算负担。在保持计算效率的同时整合原子和连续体模型仍然是一项艰巨的任务。原子尺度上材料的行为可以显著影响宏观特性,但连接这些尺度需要稳健的方法将信息从原子转移到连续体。开发有效的耦合算法以保持跨尺度数据的准确性和一致性对于可靠的多尺度模拟至关重要。此外,量子计算有可能通过加速多尺度建模并具有超越传统计算机的巨大计算能力来彻底改变科学技术领域。本次研讨会旨在汇集 DAE 和其他研究机构的电子结构和原子模拟、连续建模、机器学习、人工智能、并行和量子计算领域的专家,以便研究学者、科学家和教师之间交流思想。研讨会将涵盖以下主题。
附录 - 其他有用信息 NASA 任务理事会 航空研究任务理事会 NASA 的航空创新者多年来取得的成果直接惠及当今的航空运输系统、航空业以及每天依赖这些飞行进步的乘客和企业。因此,每架美国商用飞机和美国空中交通管制塔都使用 NASA 开发的技术来提高效率和保证安全。 https://www.nasa.gov/directorates/armd/ 探索系统发展任务理事会 探索系统发展任务理事会负责管理月球轨道、月球表面和火星探索的载人探索系统开发。阿尔忒弥斯任务将开启月球科学发现和经济机会的新时代,同时验证操作和系统并为载人火星任务做准备。该理事会的项目包括太空发射系统火箭、猎户座飞船、地面支持系统、载人着陆系统、宇航服和 Gateway。 https://www.nasa.gov/exploration-systems-development-mission-directorate/ 科学任务理事会 科学任务理事会是一个组织,在这里,一个科学学科的发现可以直接通向其他研究领域。这种流动非常有价值,在科学界很少见。从系外行星研究到更好地了解地球气候,再到了解太阳对地球和太阳系的影响,该理事会的工作是跨学科和协作的。 https://science.nasa.gov/ 空间作业任务理事会 空间作业任务理事会保持人类在太空的持续存在,造福地球人类。该理事会下属的项目是 NASA 太空探索工作的核心,通过通信、发射服务、研究能力和机组人员支持,支持阿尔忒弥斯、商业空间、科学和其他机构任务。 https://www.nasa.gov/directorates/space-operations/ 空间技术任务理事会 技术推动探索和太空经济。NASA 的空间技术任务理事会旨在改变未来的任务,同时确保美国在航空航天领域的领导地位。该理事会开发、演示和转让有利于 NASA、商业和其他政府任务的新太空技术。https://www.nasa.gov/space-technology-mission-directorate/
作为团队的一员,每个宇航员都有一项特殊的工作要做。一些宇航员学习如何组装东西,因此他们擅长修理东西。这很重要,因为如果宇宙飞船上的某个东西坏了,宇航员必须能够自己修理。一些宇航员是懂得如何驾驶飞机的飞行员。这些宇航员必须学习如何驾驶和驾驶宇宙飞船。他们训练了很多个小时来学习如何转动它,如何让它跑得更快或更慢,以及如何引导它穿越太空。一些宇航员是领导者,负责管理船上的所有人。他们确保每个人都在做正确的工作。其他宇航员主要学习科学。他们的工作是了解生物在太空中是如何变化的。
HPSC 是一种现代的缓存一致性共享内存多核微处理器,具有八个应用处理核心,使用开放标准 64 位 RISC-V 指令集架构 (ISA) 实现 [5]。HPSC 集成了两个 SiFive X288 核心复合体,每个复合体由 4 个 X280 RISC-V 核心组成。X280 核心采用称为矢量单元的高级功能设计,符合 RISC-V 矢量扩展 (RVV) 标准。矢量单元具有 512 位矢量寄存器长度,支持可变矢量长度计算,最高可达 4096 位宽。RISC-V 矢量是一种强大且超高效的扩展,具有紧凑的代码大小、高性能能力,并且与其他 ISA 青睐的单指令多数据 (SIMD) 架构方法相比,片上 SoC 结构占用的面积有限。此外,RVV 可以在同一软件中使用不同的矢量长度,从而实现可扩展性、灵活性和未来兼容性。
舱外机动装置 (EMU) 内的现行废物管理系统由一次性尿布——最大吸收服 (MAG) 组成,它可以在长达 8 小时的舱外活动 (EVA) 期间收集尿液和粪便。长时间接触废物会导致卫生相关的医疗事件,包括尿路感染和胃肠道不适。从历史上看,在使用 MAG 之前,宇航员在开始体力消耗大的太空行走之前会限制食物摄入量或食用低残渣饮食,从而降低他们的工作绩效指数 (WPI) 并带来健康风险。此外,目前的 0.95 升宇航服内饮料袋 (IDB) 无法为更频繁、更远距离的太空行走提供足够的水,这更有可能出现需要延长离开航天器时间的应急情况。每磅货物运往太空的高昂运输成本和资源稀缺性加剧了这些挑战,凸显了节水废物管理的必要性。本文介绍了威尔康奈尔医学院梅森实验室开发的一种新型宇航员宇航服内尿液收集和过滤系统,该系统可以解决这些卫生和补水问题。该装置通过外部导管收集宇航员的尿液,并使用正向和反渗透 (FO-RO) 将其过滤成饮用水,创造可持续的卫生循环水经济,增进宇航员的健康。这项研究旨在使用改进的 MAG 实现 85% 的尿液收集率。改进的 MAG 将由内衬抗菌织物的柔性压缩材料制成,尿液通过硅胶尿液收集杯收集,该杯因男性和女性宇航员的不同而不同,以符合人体解剖学。湿度传感器检测到杯中尿液的存在,便会触发通过真空泵的尿液收集。 FO-RO 过滤系统的目标是至少回收 75% 的水,同时消耗不到 10% 的 EMU 能源。为了满足健康标准,滤液保持低盐含量(< 250 ppm NaCl)并有效去除尿液中的主要溶质(尿素、尿酸、氨、钙)。
关于 POWERHOUSE POWERHOUSE 位于艺术、设计、科学和技术的交汇处,在社区参与当代思想和问题方面发挥着关键作用。我们正在实施一项具有里程碑意义的 13 亿美元基础设施更新计划,该计划由新博物馆 Powerhouse Parramatta 的建立、Powerhouse Castle Hill 的研究和公共设施的扩建、标志性的 Powerhouse Ultimo 的更新以及悉尼天文台的持续运营牵头。该博物馆保管着超过 50 万件具有国内和国际意义的物品,被认为是澳大利亚最精美、最多样化的收藏品之一。我们还在实施一项广泛的数字化项目,将为 Powerhouse 收藏品提供新级别的访问权限。
摘要:NASA 丰富的载人航天历史为今天的探索愿景奠定了基础:保持美国在太空领域的领导地位,在月球及其周围建立持久的存在,并为火星及更远的未来铺平道路。NASA 的 Artemis 任务将使用太空发射系统、猎户座飞船和载人着陆系统将人类送回月球表面并建立永久的月球大本营。为了支持 Artemis 任务,NASA 的 Gateway 计划将通过国际合作,在月球周围建立人类第一个空间站。实现这些雄心勃勃的目标需要创新的技术和系统,其中一些尚未得到证实。先进的材料、结构和制造技术将成为月球及其周围长期居住地以及月球和深空探测飞行器的基础。为了在恶劣的太空环境中成功长时间运行,这些居住地和飞行器需要同样先进的 NDE 和 SHM 技术,以确保它们既能正确制造,又能完全完成其任务。这些技术必须坚固耐用,并易于宇航员操作,尽管宇航员可能经验有限,而且穿着笨重的宇航服。NASA 还计划使用机器人技术为外星应用建造某些关键基础设施元素。可能要建造的元素包括栖息地、着陆垫和停机坪、道路、防爆墙和遮阳墙,以及使用来自地球的原材料和月球表面现有的材料建造的隔热和微陨石防护罩。因此,可以补充机器人材料制造的自动检测技术是非常可取的。本演讲将详细讨论 NASA 在追求人类探索太空愿景的过程中对先进 NDE 和 SHM 技术的一些需求,以及过去如何满足这些需求的一些例子。