扩展飞机到达管理问题是经典飞机着陆问题的扩展,旨在提前几个小时将飞机安排到目的地机场。本文提出了一个由机会约束强化的两阶段随机混合整数规划模型。第一阶段优化问题确定飞机序列和航站楼区域参考点(称为初始进近定位点 (IAF))上的目标时间,以最小化着陆序列长度。假设 IAF 上的实际时间按照已知的概率分布随机偏离目标时间。在第二阶段,假设 IAF 上的实际时间是公开的,并且着陆时间将根据最小化时间偏差影响成本函数来确定。提出了 Benders 重新表述,并概述了 Benders 分解的加速技术。巴黎戴高乐机场的大量实际案例结果表明,两阶段随机和机会约束规划优于确定性策略。
CAS12A是V-A型CRISPR-CAS RNA引导的内切酶。它在特定位点切割了dsDNA,然后在体外反式跨体内激活以非特征ssDNA的裂解。反式活性的免疫功能仍然未知。为了解决这个问题,我们在大肠杆菌中构建了一个CAS12A靶向系统,其中CAS12A裂解了高拷贝靶质粒以释放反式ssDNA裂解活性。然后,我们分析了Cas12a靶向对非目标质粒和ssDNA噬菌体的影响。结果表明,CAS12A有效地消除了目标质粒,但对噬菌体的非目标质粒或鼠疫形成的维持没有影响。此外,有助于靶质粒耗竭的两间隔crispr阵列仍然对非目标质粒或噬菌体没有可检测的影响。一起,数据表明CAS12A的反式ssDNA切割不会导致体内免疫力。
DNA测序的历史可以追溯到1970年代初,当时使用称为Maxam-Gilbert测序的方法确定基因的第一个DNA序列。然而,这种方法是费力的,耗时的,并且产生了小的DNA片段,从而限制了其有用性。1980年代聚合酶链反应(PCR)的出现以及1990年代自动DNA测序的发展彻底改变了DNA测序领域。PCR允许扩增特定的DNA序列,从而使来自多种源的少量DNA对可能。自动DNA测序涉及使用荧光染料和自动化机器来对DNA进行序列DNA,从而使过程更快,更准确,更具成本效益。有几种DNA测序方法,每种都具有其优点和局限性。sanger测序是一种DNA测序方法,涉及使用DI脱氧核苷酸三磷酸盐(DDNTPS)在特定位点终止DNA合成[2]。
成簇的规律间隔的短回文重复序列 (CRISPR) 和 CRISPR 相关 (Cas) 蛋白是细菌和古菌所特有的,构成了针对外来移动遗传元素的适应性免疫系统。1,2 CRISPR-Cas 系统分为第 1 类(使用多个 Cas 蛋白)和第 2 类系统(使用单个多结构域 Cas 蛋白),根据复杂性和特征蛋白又细分为六种类型(I 型至 VI 型)。3 作为第 2 类系统的成员,II-A 型 CRISPR-Cas9 得到了最广泛的研究和开发,成为基因组编辑和治疗工具。 4 Cas9 具有两个核酸酶位点——His – Asn – His (HNH) 和 RuvC 样结构域,可在双 CRISPR RNA (crRNA) 和反式激活 crRNA (transcrRNA) 向导介导的特定位点实现双链 DNA (dsDNA) 的精确切割。5,6
摘要 基因治疗的理想工具是能够在人类基因组的预定位点上实现有效的基因整合。我们在此展示了睡美人 (SB) 转座子与 CRISPR/Cas9 系统的组件相结合而实现的偏向性全基因组整合。我们提供概念证明,通过将 SB 与催化失活的 Cas9 (dCas9) 融合并提供针对人类 Alu 逆转录转座子的单向导 RNA (sgRNA),可以影响 SB 的靶位选择。转座子整合的富集依赖于 sgRNA,并且以不对称模式发生,偏向于 sgRNA 靶标下游相对较窄的 300 bp 窗口内的位点。我们的数据表明,CRISPR/Cas9 指定的靶向机制迫使整合到基因组区域,而这些区域原本是 SB 转座的不良靶标。未来对该技术的改进可能会允许开发用于精确基因工程的特定基因插入方法。
精确修改植物基因组(例如在预定位点无缝插入、删除或替换 DNA 序列)是一项具有挑战性的任务。基因靶向和主要编辑是目前实现此目的的最佳方法。然而,这些技术在植物中效率低下,这限制了它们在作物育种计划中的应用。最近,人们取得了重大进展,以提高这些技术在植物中的效率。RNA 供体模板、化学修饰的供体 DNA 模板和串联重复同源定向修复等几种策略旨在改善基因靶向。此外,改进的主要编辑 gRNA 设计、使用工程逆转录酶和分裂主要编辑组件提高了植物中主要编辑的效率。本文回顾了这些新兴策略和现有技术,并对其未来改进和开发强大的植物精确基因组编辑技术进行了各种展望。关键词:CRISPR/Cas、精确基因组编辑、基因靶向、主要编辑、植物
此过程描述了如何用各种限制性核酸内切酶消化纯化的质粒DNA。使用各种缓冲液和盐条件,将质粒DNA切成各种长度DNA片。然后,可以使用E-Gel功率SNAP电泳和SAP-23132 Chemidoc MP Imaging Imaging Systems使用E-Gel Power Snap Extrophoresis和SP-23132 Chemidoc Imaging Systems使用E-Gel Power Snap Systems和SEOP-23132 ChemIdoc Imaging Systems,并具有来自Bio-Rad的Image Lab touch软件。限制性核酸内切酶识别短的DNA序列,然后在识别序列内或附近的特定位点上裂解双链DNA。限制性核酸内切酶将DNA裂解为离散片段是分子生物学中最基本的过程之一。基本协议描述了如何为任何酶和缓冲液条件切割DNA。这些包括用一个以上的内切酶消化给定的DNA样品,并用相同的内切酶消化多个DNA样品。
gRNA(向导 RNA):Cas9 使用的 CRISPR RNA(crRNA)包含 20 个碱基的原间隔元件和与 tracrRNA 互补的额外核苷酸。反式激活 CRISPR RNA(tracrRNA)与 crRNA 的互补区域杂交。组合的 crRNA 和 tracrRNA 与 Cas9 内切酶相互作用,激活编辑复合物以在目标基因组内的特定位点产生双链断裂。这 2 种天然 RNA 分子可以合成生成,用于基因组编辑实验。IDT 科学家已经修改了这些 RNA 的长度和组成,以优化基因组编辑效率,尤其是在与 CRISPR 核酸酶预先复合并以 RNP 形式递送到细胞时。或者,可以使用单向导 RNA(sgRNA)代替 crRNA 和 tracrRNA 的组合。sgRNA 包含通过发夹状环序列连接的 crRNA 和 tracrRNA 序列。向导 RNA(gRNA)可以是 crRNA:tracrRNA 复合物,也可以只是 sgRNA。
AAIB 航空事故调查处 AFS 自动飞行系统 agl 高于地面 AIP 航空信息出版物 amsl 高于平均海平面 AP 自动驾驶仪 AP 1 1 号自动驾驶仪 AP 2 2 号自动驾驶仪 ATC 空中交通管制 A/THR 自动油门 ATIS 自动终端信息系统 CAA 民航局 CDA 恒定下降角 CDU 控制显示单元 CFIT 可控飞行撞地 CMD 指挥模式 CRM 机组资源管理 CRS 航线 CVR 驾驶舱语音记录器 CWS 控制轮转向 DME 测距设备 EFIS 电子飞行信息 EGPWS 增强型 GPWS FAA 美国联邦航空管理局 FAF 最后进近定位点 FCOM 飞行操作手册 FCU 飞行控制面板 FD 飞行指引仪 FDR 飞行数据记录器 FL 飞行高度 FLC 飞行高度变化 FLTA 前视地形规避 FMA 飞行模式信号器 FMC 飞行管理计算机 FMS 飞行管理系统 FO 副驾驶 Fpm 英尺每分钟 ft 英尺
定向进化可以有效地改造蛋白质、生物合成途径和细胞功能。传统的基于质粒的方法通常对一个或偶尔多个感兴趣的基因进行诱变,需要耗时的人工干预,并且进行诱变的基因在其原生基因组背景之外。其他方法不加选择地诱变整个基因组,这可能会扭曲结果。最近的重组工程和基于 CRISPR 的技术通过允许在其原生基因组背景下的多个预定位点上实现极高的突变率,从根本上改变了这一领域。在这篇综述中,我们重点介绍了最近的技术,这些技术可能允许在这些目标序列的原生基因组背景下在多个基因组位点上加速可调诱变。这些技术将通过四个主要标准进行比较,包括诱变规模、对多种微生物物种的可移植性、脱靶诱变和成本效益。最后,我们讨论这些技术进步如何为基础研究和生物技术开辟新的途径。