CSNC 中国卫星导航大会 EGNOS 欧洲地球静止导航叠加服务 EIAST 阿联酋先进科学技术研究所 ESA 欧洲航天局 ESPI 欧洲空间政策研究所 EUPOS 欧洲定位系统 EUREF 欧洲参考框架分委员会 FAI 世界航空运动联合会 FCC 美国联邦通信委员会 FIG 国际测量师联合会 GAGAN GPS 辅助 GEO 增强导航系统 Galileo 欧洲全球导航卫星系统 GEO 地球同步轨道 GLONASS 全球导航卫星系统 GNSS 全球导航卫星系统 GPS 全球定位系统 ETRS 欧洲地球参考系统 IADC 机构间空间碎片协调委员会 IAG 国际大地测量学协会 IAIN 国际导航学会协会 ICA 国际制图协会 ICAO 国际民用航空组织 ICG 全球导航卫星系统国际委员会 IDM 干扰检测与缓解 IERS 国际地球自转与参考系统服务 IGMA 国际 GNSS 监测与评估 iGMAS 国际 GNSS 监测与评估服务 IGS 国际 GNSS 服务
代表 (COR) 在承包商的设施接收船舶。完成以下修改,主发动机 (ME) 和减速齿轮 (RG) 更换、电气配电板升级、船舶服务柴油发电机 (SSDG) 更换、贝利监控和控制系统更换、动态定位系统 (DPS) 升级、应急柴油发电机 (EDG) 日间油箱高吸力管道改造、风传感器更换、运动参考单元 (MRU) 更换、DPSG Fugro Seastar 更换、螺旋桨更换、SSDG 交流发电机端轴承更换、机舱舱底保护、压载泵/电机更换,与 AIT 协调以支持并在可用结束日期之前完成所有合同要求。通过 COR 安排和协调政府与合同官员从承包商的设施提取船舶。(选项项目 1) 船舶照明升级 (选项项目 2) 应急柴油发电机 (EDG) 更换 (选项项目 3) 驾驶室地板更换 (选项项目 4) 驾驶室和海图区域重新布置 (选项项目 5) 灭火系统更换 1.3 定义:在本规范中,以下定义和术语具有
近几十年来,对粮食生产和消费的需求不断提高,使当代农业部门比以前更加重要。无人机是学者,农艺学家,农业工程师和农民的快速发展和有效的方式,可以精确计划和监督当前和未来的发展,同时在可持续的农业管理平台中简化农业运营。一个繁忙的科学领域,未来方向的可能性很高是智能农业,它使用强大的数据分析来获得有关农作物和田地的洞察力知识。使农业专家能够专注于现在可用的资源和方法来增强农业业务,但精密农业在提高可持续性标准方面起着至关重要的作用。无人驾驶汽车也称为无人机,它整合了先进的数据模型,人工智能,通信和信息技术,以及高度技术创新,例如定位系统,遥控传感器系统以及土壤和作物检测软件以及可变速率技术,是精确农业的最新用途之一。因此,可以使用无人机进行一系列园艺农业运营,包括作物和托儿所的监视,早期的害虫和疾病鉴定和补救,并绘制该领域的作物发展评估。
现实世界的传感处理应用需要紧凑、低延迟和低功耗的计算系统。混合忆阻器-互补金属氧化物半导体神经形态架构凭借其内存事件驱动计算能力,为此类任务提供了理想的硬件基础。为了展示此类系统的全部潜力,我们提出并通过实验演示了一种用于现实世界对象定位应用的端到端传感处理解决方案。从仓鸮的神经解剖学中汲取灵感,我们开发了一种生物启发的事件驱动对象定位系统,将最先进的压电微机械超声换能器传感器与基于神经形态电阻式存储器的计算图结合在一起。我们展示了由基于电阻式存储器的巧合检测器、延迟线电路和全定制超声传感器组成的制造系统的测量结果。我们使用这些实验结果来校准我们的系统级模拟。然后使用这些模拟来估计对象定位模型的角度分辨率和能量效率。结果揭示了我们的方法的潜力,经评估,其能量效率比执行相同任务的微控制器高出几个数量级。
采用微下拉法生长了一系列 Yb 3 + 掺杂的钇铝单斜 Y 4 Al 2 O 9 (Yb:YAM) 单晶,其中 Yb 3 + 离子浓度分别为 0.1、1、5 和 10 at.%。低温吸收测量表明 Yb 3 + 结合在几个明确的中心。位置选择性激发和发射实验可以定位系统中检测到的主要中心的基态 2 F 7/2 和 2 F 5/2 流形的能级。测量了 10 至 300 K 范围内的跃迁能量和共振跃迁线宽的温度依赖性,并且可以通过一个声子近共振过程很好地描述。还研究了 Yb 3 + 浓度对 Yb:YAM 荧光光谱结构的影响。观察到随着 Yb 3 + 浓度的增加,来自低能位点的发光占据了发射光谱的主导地位。分析了在每个位点的选择性激发下在 10 至 300 K 温度范围内记录的荧光动力学。© 2020 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
I。UWB技术从高时域的分辨率中受益,从而导致精确时间(TOF)和高分辨率通道脉冲响应(CIR)测量值。高分辨率CIR提供了有用的信息,可用于应对主要本地化挑战,例如多径传播,使UWB成为挑战环境的关键技术。UWB技术实现了几种本地化,其中高度要求到达角度(AOA)估计。AOA估计是狭窄光束无线数据传输和智能天线系统的至关重要任务,可促进光束成形[3],车辆通信[4]和室内定位[5]。与需要在锚节点和标签节点之间进行双向通信的方法不同,例如双向范围,在AOA估计中,不需要反馈链接(在自我定位中),从而可以提高系统的可扩展性和复杂性。此外,当前的UWB定位系统通常使用定时信息来确定移动标签和几个分布式锚节点之间的距离。通过在锚节点上添加其他天线和无线电模块(例如创建天线阵列),可以在每个天线元件上确定相位和到达时间,从而可以提取到达角度的信息。因此,
摘要 - 我们目前RL2是一种机器人系统,用于有效,准确的UHF RFID标签。与过去的机器人RFID定位系统(主要集中在位置精度上)相比,RL2学会了如何共同优化定位的准确性和速度。为此,它引入了基于增强学习的轨迹优化网络,该网络学习了机器人安装的读取器天线的下一个最佳轨迹。我们的算法从多个RFID标签中编码孔径长度和位置置信度(使用合成驱动 - 雷达公式)到状态观测值,并使用它们来学习最佳轨迹。我们构建了RL2的端到端原型,其天线在天花板安装的2D机器人轨道上移动。我们评估了RL2,并证明了中位3D定位精度为0.55m,它与基线策略相比,它更快地定位了多个RFID标签2.13倍。我们的结果表明,基于RL的RFID本地化有可能提高跨越制造,零售和物流领域的RFID库存流程的效率。索引术语 - 增强学习,RFID本地化,机器人技术,自主定位,RF传感
地月自主定位系统技术操作和导航实验 (CAPSTONE) 任务由 NASA 与科罗拉多州威斯敏斯特的 Advanced Space, LLC 合作开发。这项技术演示任务是月球周围近直线晕轨道 (NHRO) 操作的探路者。NHRO(近月点 = 3,200 公里;远月点 = 70,000 公里)是 NASA 的 Artemis Gateway 的预定轨道,Artemis Gateway 是一个计划在月球轨道上运行的小型载人空间站。CAPSTONE 任务将验证模拟并确认 Gateway 的运行计划,同时验证 Gateway 动力和推进元件的导航和驻留要求的性能。因此,该任务将为 NASA、商业和国际任务提供在苛刻的轨道范围内运行的运行经验。CAPSTONE 任务由 Terran Orbital Corporation 开发、集成和测试的 12 单元 (U)+ CubeSat 组成,它携带一个有效载荷通信系统,能够与 NASA 的月球勘测轨道器 (LRO) 进行交联测距。CAPSTONE 包含一个芯片级原子钟 (CSAC),用于与 NASA 的深空网络进行单向测距实验,一个专用的有效载荷飞行计算机用于软件演示,以及一个摄像头。此次发射由 NASA 的发射服务计划协调,由 Rocket Lab 在其 Electron 运载火箭上使用其 Photon 上面级部署 CAPSTONE 航天器。该任务于 2022 年 6 月 28 日发射。CAPSTONE 航天器从光子级部署,经历了大约 4 个月的高度燃料效率转移阶段,于 2022 年 11 月 13 日进入 NRHO,进行为期六个月的主要任务阶段。该任务目前处于为期十二个月的技术增强运营阶段。CAPSTONE 技术演示任务由 Advanced Space, LLC 领导。航天器开发和任务运营由加利福尼亚州欧文市的 Terran Orbital Corporation 进行。CAPSTONE 任务的显著成就包括展示 NHRO 的可达性;验证 NHRO 环境中的关键操作概念;为未来月球运营的商业支持奠定基础;并加速实现地月自主定位系统 (CAPS) 提供的点对点导航功能。CAPSTONE 任务由 NASA 的小型航天器技术 (SST) 计划资助,该计划是 NASA 空间技术任务理事会的几个计划之一。该计划的目的是开发和演示增强和扩展小型航天器能力的技术,特别注重通过使用小型航天器实现新的任务架构,扩大小型航天器到达新目的地的范围,并增强未来
自动车辆定位 (AVL) 是一种用于跟踪和监控任何配备软件单元的远程车辆的先进方法,该软件单元通过 GPS 卫星接收和传输信号。AVL 是全球定位系统 (GPS) 和地理信息系统 (GIS) 的组合,可提供每辆车的实际地理实时位置。AVL 设置的整个传输机制依赖于 GPS 卫星、车辆上的接收器、无线电系统和用于调度的基于 PC 的跟踪软件。无线电通信系统通常与蜂窝电话网络相同。两种最常见的 AVL 系统是基于 GPS 和基于路标的系统。基于路标的 AVL 系统使用较早,但随着现代卫星的发展,GPS 技术现在使用得更多。对于需要车辆实时位置信息的应用,使用可以实时传输位置信息的自动车辆定位系统。实时车辆跟踪系统包含安装在车辆中的硬件设备(车载单元)和远程跟踪服务器。如果跟踪服务器与要跟踪的车辆之间的距离较小,则使用 RF 发射器将信息传输到跟踪服务器。跟踪服务器还具有 RF 接收器,用于接收车辆位置信息并将该信息存储在数据库中。
在中国,无人驾驶汽车(UAV)越来越多地用于广播农业投入,例如农药,肥料和种子。无人机具有特定地点的精确农业的潜力,促进了对施肥,植物保护和灌溉的精确管理,以减少耕作的环境足迹。已经有关于在农业中使用无人机的研究,但对基于无人机的精确农业,尤其是模式管理知之甚少。为了缩小这些研究差距,本文对与中国农业无人机有关的18个领域的18个专家进行了深入的访谈,以研究现状,驱动因素和采用无人机的障碍,重点关注基于无人用的精确农业,尤其是模式管理。结果表明,中国无人机的采用受农民的生产特征,农民对无人机的看法和社会因素的影响。基于无人机的精确农业处于中国的初始阶段,这种方法仍然需要克服技术障碍,例如提高农作物测量的准确性,开发实时无人机定位系统,并增强可变率喷涂系统的响应时间,以及像农民的社会障碍一样,以及类似于农业的知识,不足的知识和小型农场,以及缺乏工具,以及缺乏工具,以及缺乏工具的努力,以及缺乏领域。