图 1 RolR 诱变、选择和半自动化高通量筛选工作流程。a. 全构象的 RolR 二聚体(PDB:3AQT),以及配体结合口袋的结构,其中残基 D149 为黑色,间苯二酚为青色,5Å 内选择用于诱变的 19 个残基为橙色,5Å 和 8Å 之间的残基为紫色。b. 组合活性位点饱和度测试 (CAST) 的笛卡尔结合口袋图。c. 六个氨基酸组组成了要用于诱变的 19 个残基。d. 生物传感器 TetA 双重选择的原理,使用 NiCl 2 对转录抑制能力进行负向选择,使用四环素对目标配体进行正向选择。e. 半自动化高通量筛选。在第 1 天,为每个候选分子挑选约 500 个菌落。第二天,使用声学液体处理器将 IPTG 和小分子分配到 384 孔板中。生长的菌落被稀释并分配到 384 个孔板中,使用液体处理工作站测试传感器的不同状态。第三天,荧光
5 加州大学伯克利分校分子与细胞生物学系,加利福尼亚州伯克利,美国。 6 马克斯普朗克分子细胞生物学和遗传学研究所以及马克斯普朗克复杂系统物理研究所,德国德累斯顿。 7 欧洲分子生物学实验室(EMBL),发育生物学部,德国海德堡。 8 加州大学欧文分校发育与细胞生物学系,加利福尼亚州欧文,美国。 9 波士顿大学生物医学工程系和生物设计中心,马萨诸塞州波士顿,美国# 通讯作者:alvaro.sanchez@yale.edu 摘要 定向进化已用于自上而下地设计生物系统数十年。通常,它已应用于生物体水平或以下,通过迭代采样突变景观来引导寻找具有更高功能的遗传变异。在生物体水平之上,少数研究尝试人工选择微生物群落和生态系统,但成功率参差不齐,且通常不高。我们对人工生态系统选择的理论理解仍然有限,特别是对于大型无性生物群落,而且我们对设计有效的方法来指导它们的进化知之甚少。为了解决这个问题,我们开发了一个灵活的建模框架,使我们能够在广泛的生态条件下系统地探究任意一组群落和选定功能上的任意选择策略。通过在相同条件下人工选择数百个计算机模拟微生物元群落,我们检查了迄今为止使用的两种主要育种方法的基本局限性,并规定了显着提高其功效的修改。我们确定了一系列定向进化策略,特别是当结合使用时,它们更适合自上而下地设计大型、多样化和稳定的微生物群落。我们的结果强调,定向进化允许在生态结构功能景观中进行导航,以寻找动态稳定、生态和功能具有弹性的高功能群落。
90095,美国。* 通讯作者电子邮件:ana@chem.ucla.edu 摘要。为了解开为什么计算设计无法创造可行的酶,而定向进化 (DE) 却能成功,我们的研究深入研究了原珠蛋白的实验室进化。DE 已经改造了这种蛋白质,使其能够有效催化卡宾转移反应。我们表明,之前提出的增强底物接近和结合本身不能解释 DE 期间产量的增加。通过蛋白质动力学跟踪整个活性位点的 3D 电场,使用亲和力传播算法进行聚类,并进行主成分分析。该分析揭示了 DE 电场的显着变化,其中不同的场拓扑影响过渡态能量和机制。一个具有化学意义的场成分出现并在 DE 期间起主导作用,并有助于跨越卡宾转移障碍。我们的研究结果强调了内在电场动态对酶功能的影响、场在同一蛋白质内切换机制的能力以及场在酶设计中的关键作用。主页
通过在体内大规模地同时进行超突变和选择,微生物宿主中的酶和其他蛋白质的连续定向进化能够超越经典定向进化,并且只需极少的手动输入。如果目标酶的活性可以与宿主细胞的生长相结合,那么只需选择生长就可以提高活性。与所有定向进化一样,连续版本不需要事先了解目标的机制。因此,连续定向进化是修改植物或非植物酶以用于植物代谢研究和工程的有效方法。在这里,我们首先描述用于连续定向进化的酵母(酿酒酵母)OrthoRep 系统的基本特征,并将其与其他系统简要比较。然后,我们将逐步介绍使用 OrthoRep 进化主要代谢酶的三种方式,并以 THI4 噻唑合酶为例并说明获得的突变结果。最后,我们概述了 OrthoRep 的应用,这些应用满足了日益增长的需求:(i)改变植物酶的特性以便返回植物;(ii)改造(“植物化”)原核生物(尤其是外来原核生物)的酶,使其在温和的类植物条件下发挥良好作用。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 8 月 28 日发布。;https://doi.org/10.1101/2021.08.26.457776 doi:bioRxiv 预印本
为了了解每种野生型氨基酸对不同侧链性质的可及性,我们将所有 20 种氨基酸分为 8 类:非极性(NP、M、I、L、V、A)、极性不带电(PU、S、T、Q、N)、带正电荷(PC、R、K、L)、带负电荷(NC、D、E)、芳香族(Ar、F、T、Y)和三个特殊基团 P、C、G,由于其性质不同,每个基团仅由一个氨基酸组成。通过易错 PCR,每种野生型氨基酸都有一些不可接近的性质类别,如图 4c 所示。此外,在
© 2020 年由 Elsevier 出版。本稿件根据 Elsevier 用户许可证提供 https://www.elsevier.com/open-access/userlicense/1.0/
摘要:植物进化产生的酶可能不是最大程度地提高当今农业环境和植物生物技术应用的最佳产量和质量。通过提高酶的性能,应减轻动力学特性或酶不稳定当前对产量和质量的约束。酶,这需要在体外突变靶基因,并筛选或选择突变的基因产物为所需的特征。连续定向进化是一个更有效,更可扩展的版本,它通过靶基因的易于发达的复制以及宿主细胞的生长速率与靶基因功能的偶联来完成诱变和选择步骤。但是,已发布的连续系统需要自定义的质粒组件,并且不可用的多功能平台。我们讨论了两个适合于酿酒酵母中的酶连续进化的系统,在大肠杆菌中的葡萄糖和evolvr,以及我们的试点效应,以适应每个系统,以用于高通用植物酶工程。为了测试我们的修改系统,我们使用了硫胺素合成酶Thi4,该酶先前鉴定为改进的主要候选者。我们适应的矫正系统显示出对有效植物酶工程的希望。
。CC-BY-NC-ND 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 2 月 5 日发布。;https://doi.org/10.1101/2025.02.04.636165 doi:bioRxiv 预印本
我们提出了退火突变近似景观 (AMaLa),这是一种从定向进化实验测序数据推断适应度景观的新方法。定向进化实验通常从单个野生型序列开始,该序列经历达尔文体外进化,通过多轮突变和选择达到目标表型。近年来,定向进化正在成为一种在受控实验条件下探测适应度景观的有力工具,并且由于对不同轮次进行了高通量测序,定向进化成为开发准确统计模型和推理算法的相关试验场。适应度景观建模策略要么使用变体的丰富度作为输入数据,因此需要在不同轮次观察相同的变体,要么简单地假设最后一轮测序的变体是平衡采样过程的结果。 24 AMaLa 旨在有效利用所有序列轮次的时间演化中编码的信息。为此,一方面,我们假设序列轮次之间存在统计抽样独立性,另一方面,我们用时间相关的统计权重来衡量序列空间中所有可能的轨迹,该权重由两个贡献组成:(i)一个解释选择过程的统计能量项,(ii)一个简单的广义 Jukes-Cantor 模型来描述纯突变步骤。30 这种简单的方案使我们能够准确地描述具体实验设置中的定向进化动力学,并推断出一个适应度景观,该景观可以正确再现选择下的表型(例如抗生素耐药性)的测量值,明显优于广泛使用的推理策略。我们通过展示推断的统计 34 模型如何用于预测野生型序列的相关结构特性,以及如何重现未用于训练模型的大规模功能筛选的突变效应,来评估 AMaLa 的可靠性。36