摘要。监视系统的兴起导致收集的数据呈指数增长,从而在深度学习方面有了一些进步来利用它们并自动化自治系统的任务。车辆检测是智能车辆系统和智能运输系统领域的关键任务,使得控制交通密度或检测事故和潜在风险是可能的。本文提出了一个最佳的元方法,可以应用于任何即时分割模型,例如蒙版R- CNN或yolact ++。使用这些模型和超分辨率获得的初始检测,进行了优化的重新指导,允许检测未鉴定的元素并提高其余检测的质量。超分辨率的直接应用是有限的,因为实例分割模型根据固定维度处理图像。因此,如果超过超过该固定尺寸的尺寸,该模型将再次重新汇总,从而失去所需效果。这种元方法的优点主要在于不需要修改模型体系结构或重新培训它。无论给出的输入的图像的大小如何,都将生成符合对象分割模型定义维度的超级分辨区域。应用我们的建议后,实验显示了CityScapes数据集Jena序列中使用的Yolact ++模型的提高高达8.1%。
摘要 - 在移动医疗保健和远程诊断中,核分割是病理分析,诊断和分类的关键步骤,需要实时处理和高准确性。然而,核大小,模糊轮廓,不均匀染色,细胞聚类和重叠的细胞的变化阻碍了精确的分割。此外,现有的深度学习模型通常以增加复杂性的成本优先考虑准确性,从而使其不适合资源有限的边缘设备和现实世界部署。为了解决上述问题,我们提出了一个边缘感知的双分支网络,用于核实例分割。网络同时预测目标信息和目标轮廓。在网络中,我们提出了一个上下文融合块(CF-block),该融合块有效地从网络中提取和合并了上下文信息。加法 - 我们引入了一种后处理方法,该方法结合了目标信息和目标轮廓,以区分重叠的核并生成实例分割图像。进行了广泛的定量评估,以评估我们方法的性能。实验结果表明,与BNS,Monuseg和CPM-17数据集的最新方法相比,该方法的出色性能。索引术语 - 努塞鲁斯细分,移动医疗保健,实体细分,医学成像,双支分支网络
摘要 大多数生物医学应用面临的主要问题之一是大量未标记的数据。人类专家手动分析和分类海量数据库大多是不可行的,在某些有限条件下(仍然极其耗时)只有部分工作仅针对专家可轻松识别的简单特征。关于这个方面,医学专家面临两个具有挑战性的问题:如何选择最重要的数据进行标记,以及数据集的最小大小是多少(但足以定义每种病理)以进行分类器的训练。在本章中,我们提出了一种基于可视化数据分析的新方法,以使用最少的标记数据构建有效的分类器。编码器是卷积变分自动编码器 (CVAE) 的一部分,用作 2D 可视化的数据投影。输入向量被编码到二维潜在空间中,这有助于专家直观地分析训练数据集的空间分布。
无监督的域适应性(UDA)是解决域转移问题的有效方法。特别是UDA方法试图对齐源和目标代表,以改善对目标域的概括。,UDA方法在适应过程中可以访问源数据的假设下起作用。但是,在实际情况下,由于隐私法规,数据传输限制或专有数据关注,标记的源数据通常受到限制。源 - 自由域适应(SFDA)设置旨在通过对目标域进行源训练的模型来减轻这些问题,而无需访问源数据。在本文中,我们探讨了自适应对象检测任务的SFDA设置。为此,我们提出了一种新颖的培训策略,以使源训练的对象将对象降低到目标域而没有源数据。更重要的是,我们通过利用给定目标域输入的对象关系来设计一种新颖的对比损失,以增强目标表示形式。这些对象实例关系是使用实例关系图(IRG)网络建模的,然后将其用于指导对比度代表学习。此外,我们还利用学生教师将知识从源训练的模型提高到目标域。对多个OB-JECT检测基准数据集进行了广泛的实验表明,所提出的方法能够有效地适应源训练的对象检测器对目标域,超过了最先进的域自适应检测方法。代码和模型在https://viudomain.github.io/irg-sfda-web/中提供。
摘要:事件摄像机是一种新型图像传感器。这些传感器的像素彼此独立地和彼此独立运行。传感器输出是一个可变的速率数据流,该数据流在时空上编码亮度变化的检测。这种类型的输出和传感器操作范例为计算机视觉应用构成了处理的处理,因为基于框架的方法并非本地适用。我们在基于事件的室外监视的背景下,对不同最新的基于深度学习的实例分割方法进行了首次系统评估。用于处理,我们考虑将事件输出流转换为不同维度(包括点,体素和基于框架的变体)的表示。我们介绍了一个新的数据集变体,该变体在每个输出事件的实例级别以及基于密度的预处理以生成感兴趣的区域(ROI)。实现的实例分割结果表明,基于事件的域的现有算法的适应是一种有希望的方法。
摘要 — 近年来,病理诊断通过将深度学习模型与使用全切片图像 (WSI) 的多实例学习 (MIL) 框架相结合而取得了优异的表现。然而,WSI 的千兆像素特性对高效的 MIL 提出了巨大挑战。现有研究要么不考虑实例之间的全局依赖关系,要么使用线性注意等近似值来建模对对实例交互,这不可避免地带来了性能瓶颈。为了应对这一挑战,我们提出了一个名为 MamMIL 的框架用于 WSI 分析,通过将选择性结构化状态空间模型(即 Mamba)与 MIL 相结合,能够在保持线性复杂度的同时对全局实例依赖关系进行建模。具体而言,考虑到 WSI 中组织区域的不规则性,我们将每个 WSI 表示为一个无向图。为了解决 Mamba 只能处理一维序列的问题,我们进一步提出了一种拓扑感知扫描机制来序列化 WSI 图,同时保留实例之间的拓扑关系。最后,为了进一步感知实例之间的拓扑结构并结合短程特征交互,我们提出了一种基于图神经网络的实例聚合块。实验表明,MamMIL 可以实现比最先进的框架更先进的性能。代码可以在 https://github.com/Vison307/MamMIL 访问。索引术语 — 多实例学习、状态空间模型、整个幻灯片图像
近年来,深度学习方法因其解决复杂任务的能力而变得无处不在。然而,这些模型需要庞大的数据集才能进行适当的训练和良好的泛化。这意味着需要很长的训练和微调时间,对于最复杂的模型和大型数据集,甚至需要几天的时间。在这项工作中,我们提出了一种新颖的量子实例选择 (IS) 方法,该方法可以显着减少训练数据集的大小(最多 28%),同时保持模型的有效性,从而提高(训练)速度和可扩展性。我们的解决方案具有创新性,因为它利用了一种不同的计算范式——量子退火 (QA)——一种可用于解决优化问题的特定量子计算范式。据我们所知,之前还没有尝试使用 QA 解决 IS 问题。此外,我们针对 IS 问题提出了一种新的二次无约束二元优化公式,这本身就是一项贡献。通过对多个文本分类基准进行大量实验,我们通过经验证明了我们的量子解决方案的可行性和与当前最先进的 IS 解决方案的竞争力。
尽管隐式神经表征 (INR) 近期取得了进展,但对于基于坐标的 INR 多层感知器 (MLP) 来说,学习跨数据实例的通用表征并将其推广至未见实例仍然具有挑战性。在这项工作中,我们为可推广的 INR 引入了一个简单而有效的框架,该框架使基于坐标的 MLP 能够通过仅调节早期 MLP 层中的一小组权重作为实例模式组合器来表示复杂数据实例;其余 MLP 权重学习跨实例通用表示的模式组合规则。我们的可推广 INR 框架与现有的元学习和超网络完全兼容,可用于学习预测未见实例的调节权重。大量实验表明,我们的方法在音频、图像和 3D 对象等广泛领域都实现了高性能,而消融研究验证了我们的权重调节。
单细胞转录组学可以研究细胞异质性,但是当前的无监督策略使将单个细胞与样品条件相关联的挑战。我们提出了SCMILD,这是一个基于多个实例学习的弱监督学习框架,该框架利用样本级标签来识别与条件相关的细胞亚群。SCMILD采用双分支结构来同时执行样本级分类和细胞级表示。,我们使用与CRISPR扰动细胞的对照模拟研究验证了该模型对条件相关细胞的可靠鉴定。对包括狼疮,COVID-19和溃疡性结肠炎在内的各种单细胞RNA-seq数据集进行了评估,SCMILD始终超过了最先进的模型,并确定了与原始研究的发现一致的条件特异性细胞亚群。这证明了SCMILD探索各种生物学条件及其在不同疾病环境中的适用性的细胞异质性的潜力。
摘要:家禽业在全球农业中起关键作用,家禽是蛋白质的主要来源,并为经济增长做出了重大贡献。但是,该行业面临着与重复性且苛刻的劳动密集型任务相关的挑战。自动化已成为提高运营效率并提高工作条件的关键解决方案。具体来说,机器人的操纵和对象的处理在工厂中变得无处不在。但是,存在挑战以预先识别和引导机器人处理一堆具有相似纹理和颜色的物体。本文着重于开发旨在自动化鸡的机器人解决方案的视觉系统,该机器人解决过程是一种基本的,但在家禽加工中是一种基本但身体上剧烈的活动。为了解决通用实例分割模型在识别重叠对象中的限制,开发了一种具有成本效益的双重活性激光扫描系统来生成对象上的精确深度数据。将经过良好的深度数据生成与RGB图像集成在一起,并将其发送到实例分割模型以进行单个鸡检测和识别。这种增强的方法显着改善了该模型在处理涉及重叠鸡的复杂场景中的性能。具体而言,RGB-D数据的集成将模型的平均平均精度(MAP)检测准确性提高了4.9%,并显着改善了中心偏移 - 本研究中引入的定制度量标准,以量化地面真相蒙版中心与预测的面具中心之间的距离。精确的中心检测对于开发未来的机器人控制解决方案至关重要,因为它可以确保在鸡肉重定过程中准确抓住。中心偏移量从22.09像素(7.30 mm)降低到8.09像素(2.65 mm),证明了该方法在缓解闭塞挑战和增强视觉系统的可靠性方面的有效性。