Loading...
机构名称:
¥ 1.0

基于实例的学习理论(IBLT)建议Humans通过积累经验,以决策任务特征,执行的动作以及决策结果的实用性来学习动态决策任务。该理论已应用于在各种情况下基于实例的学习模型(IBL)模型。所有IBL模型应用程序的一个关键功能是累积基于实例的内存和基于识别识别的检索的方法。在几乎没有功能的简单任务中,可以假设使用所有相关信息来假设这些知识代表和检索。但是,当详尽的特征枚举不可行时,这些方法不能很好地扩展到复杂的任务。这要求认知建模者设计状态特征的任务特定表示以及相似性指标,这些指标可能很耗时,并且无法推广到相关任务。为了解决这个问题,我们利用人工神经网络(特别是常规模型(GMS))中的最新广告来学习复杂的动态决策制定任务的表示,而无需依赖领域知识。我们评估了一系列GM在形成表示代表方面的有用性,这些代表可以被IBL模型用于预测复杂决策任务中的人类行为。这项工作通过使用GMS形成表示形式并确定相似性来连接生成和认知模型。

生成环境代表性基于实例的学习:认知模型

生成环境代表性基于实例的学习:认知模型PDF文件第1页

生成环境代表性基于实例的学习:认知模型PDF文件第2页

生成环境代表性基于实例的学习:认知模型PDF文件第3页

生成环境代表性基于实例的学习:认知模型PDF文件第4页

生成环境代表性基于实例的学习:认知模型PDF文件第5页